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A model N = 3 of graphene charge carriers has been proposed. Within the model the
pseudo-helicity is determined by the exchange interaction for pz -electrons. The symmetry
properties of the model have been examined. It has been shown that the pseudo-helicity
conservation law allows to explain experimental data on "moire" pattern and long spin
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1. Introduction

The spin relaxation time is known to be
a rather long for charge carriers in graphene
[1]. The phenomenon of weak damping of spin
correlations in graphene makes it promising
for constructing quantum devices based on
magnetoelectric effects in graphene monolayer
[2]. Two facts are important for understanding
this phenomenon, fist is that the spin relaxation
is stipulated by magnetic moments scattering
[2]. The second one is that main properties
of charged carrier transport in graphene can
be explained by Klein tunneling [6–8]. There
exist several explanations of long spin relaxation
time. A quantum mechanical Elliott—Yafet spin-
flip mechanism [3, 4] and a resonant scattering
mechanism with spin-flip exchange field [5]
assume that the long time of spin relaxation is
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connected with electron-hole pairs production.
Theoretical description of such situations is
difficult as it encounters the Klein paradox
[9, 10] when unphysical states appear. The
Klein paradox could be overcome by secondary
quantization but in this case the concept of a
single electron itself becomes meaningless. Inner
discrepancy makes these models not predictive
ones.

A Dyakonov–Perel mechanism [11] is a
classical model where spin precession prevents the
spin correlation relaxation. In quantum theory
the precession corresponds to level splitting on
sublevels with opposite spin directions (Zeeman
effect). Quantization of the Dyakonov–Perel
mechanism leads to oscillations between electron
and hole state that is equivalent to electron-hole
production process. Therefore after quantization
the Dyakonov–Perel mechanism also suffers with
the problem of Klein paradox.

Charge transport in pure graphene was
considered in several papers on the basis of
Boltzmann equation [12], Kubo formalism [13,
14] and quantum field theory [15]. Interactions
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between single-particle excitations leading to
appearance of charge carriers dynamical mass
in graphene have been described by quantum
electrodynamics methods in [16]. In [17] an
excitonic coupling was considered in the form
of non-charges exciton composed of electron and
a hole; the approach was based on the gauge
Eliashberg theory with a number of internal
degrees of freedom N = 2 (physical flavors):
pseudo-spin and pseudo-charge. The above-
mentioned theories of charge carrier transport
in graphene with pseudo-Dirac hamiltonian [18]
give the value of dynamic (optical) low frequency
conductivity σ(ω, k) equals πe2/(2h) for wave
number k, vanishing in respect to frequency ω:
k ≪ ω. Here e is the electron charge, h is the
Planck constant.

Graphene belongs to strongly correlated
many-body systems. We assume that the
inclusion of only two-particle exciton pairing
makes graphene monolayer description not
complete and causes discrepancy of theoretical
and experimental data on graphene charge
carriers transport.

In this paper, we use the theory with N = 3,
which implies the existence of a process of three-
particle exciton pairing [19].

The goal of the paper is to derive an
exchange operator in the relativistic gauge model
N = 3 of graphene, symmetry properties of
the model and to use them for explanation of
experimental data on "moire" patterns and spin
relaxation time.

2. Model of graphene charge
carriers with the pseudo-spirality
conservation law

Monatomic graphene layer of hexagonally
packed carbon atoms, shown schematically in
Fig. 1, is a material with a half-filled valence band.
A distinctive feature of graphene band structure
is the existence of Dirac cones in edges (valleys)
K, K ′ of the Brillouin zone. In the paper these
points are designated as Dirac points KA, KB.

According to Fig. 1 a particle can travel from
node A to, for example, a node AR through the

FIG. 1. Graphene lattice, comprised of two sublattice
A and B. Right left valley currentsJR

v and JL
v are

shown as rounded curves with arrows. Double arrows
from node A to node BL and from A to BR indicate
clockwise and anti-clockwise directions. The axis of
mirror reflection from AR to BL is marked by bar
dotted line. (in color)

right BR or left BL nodes. Since the particle
is symmetrical, the its description in the right
and left reference frames have to be equivalent.
Therefore the wave Ψ′ of graphene has to be
chosen in a Majorana form, which upper and
lower spin components ψ′, ψ̇′ are transformed by
left and right representations of the Lorenz group:

Ψ′ =

(
ψ′
σ

ψ̇′
−σ

)
=

(
e

κ
2
σ⃗·n⃗ψσ

e
κ
2
(−σ⃗)·n⃗ψ̇−σ

)
. (2.1)

The wave-function of a particle (in our case of

electron-hole pair) χ̂†
σ(r⃗A) |0,+σ⟩ located on the

sublattice A, behaves as a component ψσ, and

the wave-function of a particle χ̂†
−σ(r⃗B) |0,−σ⟩,

located on sublattice B, – as a component ψ̇−σ of
the bispinor (2.1).

Relativistic particles are characterized by
helicity h which represents the projection of spin
to the direction of motion [20]:

h ≡ p⃗ · S⃗ =
1

2
pi

(
σi 0
0 σi

)
(2.2)

where S⃗ is the spin operator, σ⃗ is a vector
of Pauli matrices σi, i = x, y. In quantum
relativistic field theory, the value of the helicity of
a massless particle is preserved at the transition
from one reference frame moving with velocity v1,
to another one moving with velocity v2 [20, 21].
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Let us denote S⃗AB = ~σ⃗AB/2 and S⃗BA =
~σ⃗BA/2 two-dimensional (2D) spin of quasi-
particle in valleys KA and KB, respectively.
Valley current JR

v or JL
v , on right {A → BR →

AR → B → AL → BL → A} or left {A → BL →
AL → B → AR → BR → A} closed contour
in Fig. 1, is created by electron with pseudo-
angular momentum l⃗ABR

and momentum p⃗ABR
or

by electron with l⃗ABL
and p⃗ABL

. Pseudo-helicity
of bispinors (2.1), describing a particle right or left
from lattice node A, is defined by the expressions
which are analogous to (2.2):

hBRA ≡ p⃗ABR
· S⃗BRA, (2.3)

hBLA ≡ p⃗ABL
· S⃗BLA. (2.4)

Let us act by the parity operator P , which
mirrors the bispinor (2.1) as A → B in respect
to the center of inversion. Pseudo-helicity of the
mirrored bispinor is defined by the expression

PhBRAR
P = hALBL

= p⃗BLAL
· S⃗ALBL

. (2.5)

Due to the fact that valley momentum and
pseudo-spin change signs: p⃗ALBL

= −p⃗BRAR
and

S⃗ALBL
= −S⃗BRAR

, pseudo-helicity hAB does not
change its value.

Pseudo-helicity hAB is expressed through
the projection M̃AB = σ⃗BA ·

(
l⃗AB + ~σ⃗BA/2

)
of

total angular momentum on the direction of spin
σ⃗BA as [22, 29]:

σ⃗BA · p⃗AB = σrBA

(
pr,BA + ı

M̃AB

r
− ~/2

)

= σrBA

(
pr,BA + ı

σ⃗BA · l⃗AB

r

)
(2.6)

where σrBA and pr,BA is a radial components of
spin and momentum respectively. According to
(2.6) preudo-spin-orbital scalar σ⃗BA ·⃗lAB describes
the coupling (interaction) of spin with valley
currents flowing along a closed loop in a clock-
wise or in opposite directions as shown in Fig. 1.
Hence, there exists a preferred direction along
which spin projection of bispinor (2.1) does not
change after transition from one moving reference
frame into another one. At this, the spin of a
particle precesses and, respectively, the described
transformation of the electrons and holes into
each other in exciton is a pseudo-precession.

Thus, the coupling of pseudo-spin and valley
currents stipulates the spin precession of current
exciton charge carriers in graphene. In our model
the orientation of non-equilibrium spin of the
states of monolayer graphene in electromagnetic
fields may be retained for a long time due
to prohibition of change for exciton pseudo-
helicity. Pseudo-precession is possible, if spins of
pz -electrons are anti-ordered (antiferromagnetic
ordering). Therefore, the pseudo-spin precession
of the exciton can be implemented through
the exchange interaction. Further, let us find
an exchange mechanism of strong correlations,
leading to pseudo-precession.

3. Exchange operator for a system
with a half-filled valence band

3.1. Procedure of the second
quantization

In approximation of the Dirac–Hartree–Fock
self-consistent field [22, 23], only valent electrons
contribute to graphene Hamiltonian [19, 24–27]

HD =
∑

L=A,B

N/2∑
i=1

4∑
v=1

cα⃗ · p⃗ivL + βmec
2 −

N∑
k=1

Ze2

|r⃗ivL − R⃗k|
+

∑
L<L′=A,B

N/2∑
i<j=1

4∑
v′=1

e2

|r⃗ivL − r⃗
jv

′
L′
|

 , (3.1)
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p⃗ = −ı~∇⃗, α⃗ =

(
0 σ⃗
σ⃗ 0

)
, β =

(
1 0
0 −1

)
.(3.2)

Here α⃗, β is a set 4 × 4 of Dirac matrices, σ⃗
is the set of 2 × 2 Pauli matrices, indices v and
v′ enumerate s-, px-, py and pz electron orbitals,
indices L, i and L′, j enumerate sublattices and
atoms within them respectively, r⃗ivL is the electron
radius-vector, R⃗k is the radius-vector of k-th
carbon atom without valent electrons (atomic
core), −Ze = −4e is the charge of the atomic core,
e is the electron charge, me is the free electron
mass, c is the speed of light.

We use the method of projection operators
to secondary quantize the Hamiltonian (3.1).
Density matrix ρ̂rr′ being projectors for our model

can be represented as

ρ̂rr′ =

 χ̂†
−σ

A
(r⃗) χ̂σ

A
(r⃗) χ̂†

−σ
A
(r⃗) χ̂−σ

B
(r⃗ ′)

χ̂†
σ
B
(r⃗ ′) χ̂σ

A
(r⃗) χ̂†

σ
B
(r⃗ ′) χ̂−σ

B
(r⃗ ′)


(3.3)

where
∣∣∣χ−σ

A
(r⃗)
∣∣∣2 = ⟨0| χ̂†

−σ
A
(r⃗) χ̂σ

A
(r⃗) |0⟩ and∣∣∣χσ

B
(r⃗ ′)

∣∣∣2 = ⟨0| χ̂†
σ
B
(r⃗ ′) χ̂−σ

B
(r⃗ ′) |0⟩ is the

probability to find quasi-particle excitation on
sublattice A and B respectively.

As is known [28, 29], secondary quantized
Coulomb potential V̂ (r⃗i, r⃗j) in valleys can be
obtained by the action of the square of projector
ρ̂rr′ (3.3) on two-point Coulomb potential
V (|r⃗i − r⃗j |):

V̂AB(r⃗i, r⃗j) =
1

2
χ̂†
−σ

A
(r⃗j) χ̂

†
−σ

A
(r⃗i)V (|r⃗i − r⃗j |)χ̂−σ

B
(r⃗i)χ̂−σ

B
(r⃗j),

V̂BA(r⃗i, r⃗j) =
1

2
χ̂†
σ
B
(r⃗j) χ̂

†
σ
B
(r⃗i)V (|r⃗i − r⃗j |)χ̂σ

A
(r⃗i)χ̂σ

A
(r⃗j).

(3.4)

The secondary quantize Coulomb interaction
V̂AB(BA)(r⃗i, r⃗j) (3.4) in the Hartree–Fock
approximation consists of the self-consistent
potential V̂ sc and exchange interaction Σ̂x.

Let us find V̂ sc and Σ̂x in graphene using the
approach proposed in [30, 31].

3.2. Wave function of the many-electron
system

Let an arbitrary function ψ depends
upon coordinates and spins of n electron:
ψ = ψ (r⃗1, r⃗2, . . . , r⃗n; s1, . . . sn). To be a wave
function of n electron system, the function
ψ (r⃗α1 , r⃗α2 , . . . , r⃗αn) should satisfy the Pauli
principle that is to be totally antisymmetric. Here
index αi, i = 1, . . . , n run over the set
{1, 2, . . . , n} so that αi ̸= αj at i ̸= j. This

can be done by representing this function as

ψ (r⃗α1 , r⃗α2 , . . . , r⃗αn)

= ε(Pα1α2...αn) ψ (r⃗1, r⃗2, . . . , r⃗n)
(3.5)

where Pα1α2...αn is the permutation

Pα1α2...αn =

(
1 2 . . . n
α1 α2 . . . αn

)
. (3.6)

Symbol ε(Pα1α2...αn) designates a number equals
+1, if the permutation Pα1α2...αn is even and equal
to −1 if the permutation is odd one.

It is easy to prove that functions (3.5) satisfy
the following equality∑

{αi}ni=1

ψ (r⃗α1 , r⃗α2 , . . . , r⃗αn) = 0. (3.7)

Let us split the left hand side of the expression
(3.7) on functions one of which describe the spin
configuration of the form {↑↑ . . . ↑↑ | ↓↓↓ . . . ↓},
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whereas another one –configurations {↑↑ . . . ↑↓
| ↑↓↓ . . . ↓}, {↑↑ . . . ↑↓ | ↓↑↓ . . . ↓}, {↑↑ . . . ↑↓
| ↓↓↑ . . . ↓}, . . ., {↑↑ . . . ↑↓ | ↓↓↓ . . . ↓↑} in
the following way. To obtain the configuration
{↑↑ . . . ↑↓ | ↓↓↓ . . . ↓↑}, electron from the set
of k electrons with spin "up"is translated into
the first position and permuted with all the rest

n−1 electrons. The configuration {↑↑ . . . ↑↓ | ↓↓↓
. . . ↑↓} is obtained if an electron from the set of k
electrons with spin "up"is translated to the first
position and, excluding n−th electron, permute
with n − 2 electrons. Doing in such a way and
performing all possible permutation we arrive at

∑
{αi}ni=k+1

∑
{αi}ki=1

ψ(r⃗α1 , . . . , r⃗αk−1
, r⃗αk

|r⃗αk+1
, r⃗αk+2

, . . . , r⃗αn)

=
∑

{αi}ni=k+1

∑
{αi}ki=1

(ψ(r⃗α1 , . . . , r⃗αk−1
, r⃗αk+1

| r⃗αk
, r⃗αk+2

, . . . , r⃗αn) + . . .

+ ψ(r⃗α1 , . . . , r⃗αk−1
, r⃗αk+l

|r⃗αk+1
, . . . , r⃗αk+l−1

, r⃗αk
, r⃗αk+l+1

, . . . , r⃗αn) + . . .

+ψ(r⃗α1 , . . . , r⃗αk−1
, r⃗αn |r⃗αk+1

, . . . , r⃗αk−n
, r⃗αk

)).

(3.8)

From the expression (3.8) it follows the identity

ψ(r⃗1, . . . , r⃗k−1, r⃗k|r⃗k+1, r⃗k+2, . . . , r⃗n) = ψ(r⃗1, . . . , r⃗k−1, r⃗k+1|r⃗k, r⃗k+2, . . . , r⃗n)

+ . . . + ψ(r⃗1, . . . , r⃗k−1, r⃗k+l|r⃗k+1, . . . , r⃗k+l−1, r⃗k, r⃗k+l+1, . . . , r⃗n)

+ . . . + ψ(r⃗1, . . . , r⃗k−1, r⃗n|r⃗k+1, . . . , r⃗k−n, r⃗k).

(3.9)

In a graphic form the partition (3.9) demonstrates
in Fig. 2.

The wave function on the right hand side
of symbolic expression in Fig. 2 describes the
configuration obtained by cyclic permutation of
the electron configuration shown on the left side
in Fig. 2.

Electron function is symmetric under cyclic
permutations, and mathematical notation for this
property of cyclic symmetry is the expression
(3.9). The set of functions (3.5) is a basis set
for construction of a wave function for many-
electron system. Slater determinants possess the
properties of the introduced basis set.

3.3. Hole formalism

We use the hole formalism, choosing as the
vacuum state the non-degenerate ground state
of an atom in the absence of interaction of
electrons as quasiparticles. Single-particle state

representing itself an appearance of a vacancy
in the filled electron shell is called a hole quasi-
particle excitation.

In representation of secondary quantization,
single-particle states are given by creation
operators ψ̂†(xLi ) and annihilation operators
ψ̂(xLi ) of i-th particle on a sublattice L with
generalized coordinates xLi = {r⃗i, ti, σLi }, being
a radius-vector r⃗i, time ti and spin projection σLi .

These operators satisfy the commutation
relations

ψ̂(xL
′
) ψ̂†(xL) + ψ̂†(xL) ψ̂(xL

′
)

= δ(xL − xL
′
), (3.10)

ψ̂(xL
′
) ψ̂(xL) + ψ̂(xL) ψ̂(xL

′
) = 0. (3.11)

Now one can introduce the creation operator
of a hole. Since the wave function can be written
as

Nonlinear Phenomena in Complex Systems Vol. 18, no. 1, 2015
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{↑↑↑↑︸︷︷︸ | ↓↓↓↓↓︸ ︷︷ ︸} = {↑↑↑↓︸︷︷︸ | ↑↓↓↓↓︸ ︷︷ ︸}+ {↑↑↑↓︸︷︷︸ | ↓↑↓↓↓︸ ︷︷ ︸}+ {↑↑↑↓︸︷︷︸ | ↓↓↑↓↓︸ ︷︷ ︸}+ . . .+ {↑↑↑↓︸︷︷︸ | ↓↓↓↓↑︸ ︷︷ ︸}
k n–k k n–k k n–k k n–k k n–k

FIG. 2: Graphical representation of the cyclic symmetry property of electron wave function.

ψ̂†
(n−k)↓(r⃗n, . . . , r⃗k+2, r⃗k+1) ψ̂†

k↑(r⃗k, r⃗k−1, . . . , r⃗1)|0 > =
[
ψ̂n↓(r⃗n)

+ψ̂(n+1)↑ (r⃗n+1)
]
ψ̂†

(n−k+1)↓(r⃗n+1, . . . , r⃗k+2, r⃗k+1) ψ̂†
k↑(r⃗k, r⃗k−1, . . . , r⃗1)|0 >

=
[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
|ψ1, . . . , ψn+1 >,

(3.12)

then the operator
[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
is

the hole creation operator at the position of an
electron paired with an external n-th electron.

Here the secondary quantized wave function of
the system

ψ̂†
(n−k)↓(r⃗n, . . . , r⃗k+2, r⃗k+1) ψ̂†

k↑(r⃗k, r⃗k−1, . . . , r⃗1)

describes the configuration of k electrons with
spin "up" , n − k electrons with spin "down"
wherein n = 2k + 1; that is there exist one
valent electron |0 > is the vacuum state. The
wave function (3.12) describes the system with
an unpaired external electron and a hole at a

place of the electron, paired with an external n-th
electron. Let in time moment t valley polarization
occurs. Then at the same time moment t the
secondary quantized wave function of the system
can be obtained as a result of cyclic permutation
P (cycl)(t):

P (cycl)(t)
[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
|ψ1, . . . , ψn+1 > . (3.13)

Due to the fact that operators P (cycl)(t) and[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
commutes each other,

and account for the permutation operator

definition shown graphically in Fig. 2 the
expression (3.13) can be rewritten in the form

Нелинейные явления в сложных системах Т. 18, № 1, 2015
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P (cycl)(t)
[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
|ψ1, . . . , ψn+1 >

=
[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
P (cycl)(t)|ψ1, . . . , ψn+1 >

=

[
k∑

m=1

cnm(t) ψ̂m↓(r⃗m, t) +

n∑
m=k+1

cnm(t) ψ̂(m+1)↑(r⃗m+1, t)

]

× P (cycl)
m |ψ1, . . . , ψn+1 > =

n∑
m=1

cnm(t) ψ̂(xLm) P (cycl)
m |ψ1, . . . , ψn+1 >

(3.14)

where m-th term in the sum describes a hole
(vacancy) at a place of m-th valley electron
creating after a cyclic permutation P

(cycl)
m in the

sense of (3.9), matrix ∥cnm(t)∥ transfers the hole
creation operator at place of n-th electron into

operator of hole creation at place of m-th electron
of valley L.

According to the properties of cyclic
symmetry (3.9), one can formally write the
expression

[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
=

n∑
m=1

cnm(t) ψ̂(xLm) P (cycl)
m . (3.15)

From this it follows that
∑n

m=1 cnm(t) ψ̂(xLm) must obey the same quantum equations of
motion as

[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
. Heisenberg equation of motion for a hole creation operator[

ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)
]

has the form

~
i

∂

∂t

[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
=
[[
ψ̂n↓(r⃗n) + ψ̂(n+1)↑(r⃗n+1)

]
, Ĥ

]
, (3.16)

Ĥ =

 n∑
i=1

∫
Ĥ(xi) dr⃗i +

n∑
i>j=1

∫∫
V̂ (xi, xj) dr⃗i dr⃗j

 , (3.17)

Ĥ(xi) = ψ̂†(xLi ) H( r⃗i) ψ̂(x
L
i ); V̂ (xi, xj) =

1

2
ψ̂†(xLj ) ψ̂†(xLi ) V ( r⃗i − r⃗j) ψ̂(x

L′
i ) ψ̂(xL

′
j ) (3.18)

where [ · , · ] is the commutator of operators, Ĥ
is the Hamilton operator obtained from operators
(3.1) by the procedure of secondary quantization
(3.4).

Substituting the expression (3.15) into

equation of motion (3.16), we find the
equation of motion for hole creation operator∑n

m=1 cnm(t) ψ̂(xLm) at place of m-th electron of
valley L:
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~
i

∂

∂t

n∑
m=1

cnm(t)ψ̂(xLm)P (cycl)
m =

n∑
m,i=1

cnm(t)

∫
dr⃗i

{
ψ̂(xLm)

×

ψ̂†(xLi ) H(r⃗i) ψ̂(x
L
i ) +

n∑
j=1

∫
dr⃗j
2
ψ̂†(xLj ) ψ̂

†(xLi ) V (r⃗i − r⃗j) ψ̂(x
L′
i ) ψ̂(xL

′
j )


−

ψ̂†(xLi ) H(r⃗i) ψ̂(x
L
i ) +

n∑
j=1

∫
dr⃗j
2

ψ̂†(xLj ) ψ̂
†(xLi ) V (r⃗i − r⃗j)ψ̂(x

L′
i )ψ̂(xL

′
j )

 ψ̂(xLm)
}
P (cycl)
m .

(3.19)

Here j < i. Using the permutation rules (3.10),
(3.11) of quantized fermionic fields and relation
⟨0|ψ̂† = 0, we transform the equation (3.19) to

the form

~
i

∂

∂t

n∑
m=1

cnm(t) ψ̂(xLm) P (cycl)
m =

n∑
m,i=1

cnm(t)

∫
dr⃗i

{
[δ(xLi − xLm)

× H(r⃗i) ψ̂(xi) +
n∑

j=1

∫
dr⃗j
2

δ(xLj − xLm) ψ̂†(xLi ) V (r⃗i − r⃗j) ψ̂(x
L′
i ) ψ̂(xL

′
j )


−

 n∑
j=1

∫
dr⃗j

δ(xLi − xLm)

2
ψ̂†(xLj ) V (r⃗i − r⃗j) ψ̂(x

L′
i ) ψ̂(xL

′
j )

 P (cycl)
m , for j < i

(3.20)

where δ(xLk − xLm) is the Dirac δ-function. Taking
a time derivative in the left hand side and after

integration with δ-function in right hand side of
equation (3.20), finally we obtain

(
~
i

∂ ln cnm(t)

∂t
− ε̂ Î

)
ψ̂(xLm) P (cycl)

m =

(
H(r⃗m)ψ̂(xLm) +

1

2

n∑
i=1

∫
dr⃗i

(
ψ̂†(xLi )

× V (r⃗i − r⃗m) ψ̂(xL
′

i ) ψ̂(xL
′

m ) − ψ̂†(xLi ) V (r⃗m − r⃗i) ψ̂(x
L′
m ) ψ̂(xL

′
i )
))

P (cycl)
m

=

(
H(r⃗m) ψ̂(xLm)−

n∑
i=1

∫
dr⃗i ψ̂†(xLi ) V (r⃗i − r⃗m) ψ̂(xL

′
m ) ψ̂(xL

′
i )

)
P (cycl)
m

(3.21)

where Î is the identity operator, ε̂ is the hole energy operator since
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ψ̂(xLm) = ψ̂(r⃗m, σ
L
m) exp(−i ε̂ Î t/~).

Right hand side of the equation (3.21) is rewritten
accounting for matrix multiplication rules. Now
we can find the equations describing a single-
particle state when neglecting correlations in

motion of electrons in respect to each other.
For considered configuration shown in Fig. 2
we assume that all electrons with spin "up"
move independently in respect to electrons with
spin "down". In other words, their motion is
uncorrelated. Therefore the wave function of such
configuration is factorized as follows:

ψ̂†
(n−k)↓(r⃗n, . . . , r⃗k+2, r⃗k+1) ψ̂†

k↑(r⃗k, r⃗k−1, . . . , r⃗1) |0 > = |ψ1, . . . , ψn >

= |ψn, . . . , ψk+2, ψk+1 > |ψk, ψk−1, . . . , ψ1 >

= ψ̂†
(n−k)↓(r⃗n, . . . , r⃗k+2, r⃗k+1) |0 ↓> ψ̂†

k↑(r⃗k, r⃗k−1, . . . , r⃗1) |0 ↑> .

(3.22)

From this, the expansion for the vacuum state
|0 > follows:

|0⟩ = |0 ↓⟩ |0 ↑⟩ ≡ |0, σm⟩ |0, −σi⟩ , (3.23)

which means that the vacuum state |0⟩ consists of

vacuum states of spin "up" |0 ↓⟩ and spin "down"
|0 ↑⟩.

Hermitian conjugation of the equation (3.21)
reads

(
i~
∂ ln cnm(t)

∂t
− ε̂†Î

)
P (cycl)
m ψ̂†(xLm) = P (cycl)

m

(
H(r⃗m) ψ̂†(xLm)

−
n∑

i=1

∫
dr⃗i ψ̂†(xL

′
i )V (r⃗i − r⃗m)ψ̂†(xL

′
m ) ψ̂(xi)

)
= P (cycl)

m (H(r⃗m)

× ψ̂†(xLm)−
n∑

i=1

∫
dr⃗i ψ̂†(xL

′
m ) V (r⃗i − r⃗m) ψ̂†(xL

′
i ) ψ̂(xLi )

)
.

(3.24)

Acting by the Hermitian conjugated equation (3.24) on the vacuum state (3.23) we find(
i~
∂ ln cnm(t)

∂t
− ε̂†Î

)
P (cycl)
m ψ̂†

σL
m
(r⃗m)|0, σm > |0, −σi >

= P (cycl)
m

(
H(r⃗m) ψ̂†

σL
m
(r⃗m)−

n∑
i=1

∫
dr⃗i

× ψ̂†
σL′
m
(r⃗m) ψ̂†

σL′
i
(r⃗i) V (r⃗i − r⃗m) ψ̂−σL

i
(r⃗i)
)
|0, σm > |0, −σi > .

(3.25)

Permutation P (cycl)
m (3.9), entering equation (3.25), is expressed as (permuting separately symbols L(L′)

Nonlinear Phenomena in Complex Systems Vol. 18, no. 1, 2015



90 H. V. Grushevskaya, G. G. Krylov, V. A. Gaisyonok, and D. W. Serow

and ±σk):

P (cycl)
m ψ̂†

σL′
m
(r⃗m) ψ̂†

σL′
i
(r⃗i) ψ̂−σL

i
(r⃗i)

= ψ̂†
−σL′

i
(r⃗m) ψ̂†

σL
i
(r⃗i) ψ̂σL′

m
(r⃗i)− ψ̂†

σL
m
(r⃗m) ψ̂†

−σL′
i
(r⃗i) ψ̂σL′

i
(r⃗i).

(3.26)

Substitution of the explicit expression for P (cycl)
m (3.26) into (3.25) gives the equation(

i~
∂ ln cnm(t)

∂t
− ε̂†Î

)
ψ̂†

σL
m
(r⃗m) |0, σm⟩ |0, −σi⟩ =

[
H(r⃗m) ψ̂†

σL
m
(r⃗m)

−
n∑

i=1

∫
dr⃗i

(
ψ̂†

−σL′
i
(r⃗m) V (r⃗i − r⃗m) ψ̂†

σL
i
(r⃗i) ψ̂σL′

m
(r⃗i) − ψ̂†

σL
m
(r⃗m) V (r⃗i − r⃗m)

× ψ̂†
−σL′

i
(r⃗i) ψ̂σL′

i
(r⃗i)
)]

|0, σm⟩ |0, −σi⟩.

(3.27)

Multiplying equation (3.27) from the left on the vector ⟨0, σi|, we get

i~
∂ ln cnm(t)

∂t
ψ̂†

σL
m
(r⃗m) |0, σm⟩ − ⟨0, σi| ε̂†Î |0, −σi⟩ ψ̂†

σL
m
(r⃗m) |0, σm⟩

= H(r⃗m) ψ̂†
σL
m
(r⃗m) |0, σm⟩

−
n∑

i=1

∫ dr⃗i ψ̂†
−σL′

i
(r⃗m) |0, σm⟩ V (r⃗i − r⃗m) ⟨0, σi| ψ̂†

σL
i
(r⃗i) ψ̂σL′

m
(r⃗i) |0, −σi⟩

+
n∑

i=1

∫ dr⃗i ψ̂†
σL
m
(r⃗m) |0, σm⟩ V (r⃗i − r⃗m) ⟨0, σi| ψ̂†

−σL′
i
(r⃗i) ψ̂σL′

i
(r⃗i) |0, −σi⟩ ,

(3.28)

accounting for that < 0, σi|0, −σi >= 1. If one introduces the designation ψ̂†
σj
(r⃗k) |0, σj⟩ ≡ ψj(xk),

and represent the identity operator in the form of expansion

Î =

n∑
j=1

ψ̂†
σj
(r⃗k) |0, σj⟩⟨0, σj | ψ̂σj (r⃗k) ≡

n∑
j=1

Pj ,

then the equation (3.28) can be rewritten as

i~
∂ ln cnm(t)

∂t
ψm(xLm)−

n∑
j=1

ε̂†Pj ψm(xLm) = H(r⃗m) ψm(xLm) +
n∑

i=1

∫
dr⃗i

×
(
ψm(xLm) V (r⃗i − r⃗m) ψ∗

i (x̄
L′
i ) ψ∗

i (x
L′
i ) − ψi(x̄

L′
m ) V (r⃗i − r⃗m) ψ∗

i (x
L
i ) ψ

∗
m(xL

′
m )
)
.

(3.29)

Here x̄L′
k = {r⃗k, tk, −σL′

k }. The equation (3.29),
taken in initial moment of time t = 0, describes

single-particle state ψm(xLm):[
H(r⃗m) + V̂ sc(xm) + Σ̂x(xm)

]
ψm(xLm)

=

εm(0)−
n∑

j=1

ε̂†Pj

 ψm(xLm)
(3.30)
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where the time derivative taken in initial moment
of time t = 0 is designated as εm:

εm(0) = i~
∂ ln cnm(t)

∂t

∣∣∣∣
t=0

,

V̂ sc и Σ̂x are operators of Coulomb and exchange
interactions:

V̂ sc(xm)ψm(xLm) =

n∑
i=1

∫
dr⃗iψm(xLm) V (r⃗i − r⃗m) ψ∗

i (x̄
L′
i ) ψ∗

i (x
L′
i ), (3.31)

Σ̂x(xi)ψn(xi) = −
n∑

i=1

∫
dr⃗iψi(x̄

L′
m ) V (r⃗i − r⃗m)ψ∗

i (x
L
i ) ψ

∗
m(xL

′
m ). (3.32)

Since operators V̂ sc and Σ̂x enter into the
expression (3.30) with opposite signs, self-action
terms are mutually eliminated.

Now we suppose that there exist a
representation where the hole energy operator ε̂†
in equation (3.30) is diagonalized ε̂† = ε(ki)I.

Accounting of this diagonalization condition and
replacement r⃗m → r⃗i in equation (3.30) allows us
to describe the polarization of valleys as quasi-
particle excitation with the energy ε(ki), and
the steady state given by the solution of the
eigenproblem

[
H(r⃗i) + V̂ sc(kixi)− Σ̂x(kixi)

]
ψm(kix

L
i ) =

εm(0)−
n∑

j=1

ε̂ †Pj

ψm(kix
L
i ), (3.33)

ε̂ † = ε(ki)I. (3.34)

Now, using (3.4) and (3.29, 3.31, 3.32) we can write the final expression for relativistic exchange
Σx
rel and self-consistent Coulomb potential V sc

rel :

Σx
rel

(
χ̂†

−σ
A
(r⃗)

χ̂†
σ
B
(r⃗)

)
|0,−σ⟩ |0, σ⟩ =

(
0 (Σx

rel)AB
(Σx

rel)BA 0

)(
χ̂†
−σ

A
(r⃗)

χ̂†
σ
B
(r⃗)

)
|0,−σ⟩ |0, σ⟩ , (3.35)

(Σx
rel)AB χ̂

†
σ
B
(r⃗) |0, σ⟩

= −
Nv N∑
i=1

∫
dr⃗iχ̂

†
σi

B (r⃗) |0, σ⟩ ⟨0,−σi|χ̂†
−σA

i
(r⃗i)V (r⃗i − r⃗)χ̂−σB (r⃗i)|0,−σi′⟩, (3.36)

(Σx
rel)BA χ̂

†
−σ

A
(r⃗) |0,−σ⟩

= −
Nv N∑
i′=1

∫
dr⃗i′χ̂

†
−σA

i′
(r⃗) |0,−σ⟩ ⟨0, σi′ |χ̂†

σB
i′
(r⃗i′)V (r⃗i′ − r⃗)χ̂σA

(r⃗i′)|0, σi⟩; (3.37)
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V sc
rel

 χ̂†
−σ

A
(r⃗)

χ̂†
σ
B
(r⃗)

 |0,−σ⟩ |0, σ⟩ =
(

(V sc
rel)AA 0
0 (V sc

rel)BB

) χ̂†
−σ

A
(r⃗)

χ̂†
σ
B
(r⃗)

 |0,−σ⟩ |0, σ⟩ , (3.38)

(V sc
rel)AA =

∑Nv N
i=1

∫
dr⃗i⟨0,−σi|χ̂†

−σA
i
(r⃗i)V (r⃗i − r⃗)χ̂σA

i
(r⃗i)|0,−σi⟩, (3.39)

(V sc
rel)BB =

∑Nv N
i′=1

∫
dr⃗i′⟨0, σi′ |χ̂†

σB
i′
(r⃗i′)V (r⃗i′ − r⃗)χ̂−σB

i′
(r⃗i′)|0, σi′⟩; (3.40)

4. The band structure of
monolayer graphene in approximation
of the Dirac–Hartree–Fock self-
consistent field

In papers [19, 24–27] we proposed
two-dimensional approximation of exchange

interactions and quasi-relativistic approximation
of Dirac–Hartree–Fock self-consistent field
with additional assumption on spin ordering
of sublattices A, B in graphene. In such an
approach, two-dimensional graphene is described
by the following steady state equation, e.g., for
the secondary quantized fermionic field χ̂†

+σ
B

:

[
cσ⃗BA

2D · ̂⃗pAB − ˜ΣABΣBA(p⃗AB)
] ̂̃χ†

+σ
B
(r⃗) |0, σ⟩ = cEqu(pAB)̂̃χ†

+σ
B
(r⃗) |0, σ⟩ (4.1)

where ˜ΣABΣBA = − (Σx
rel)BA (Σx

rel)AB,̂̃χ†
+σ

B
(r⃗) |0, σ⟩ = (Σx

rel)AB χ̂
†
+σ

B
(r⃗) |0, σ⟩,

σ⃗AB
2D = (Σx

rel)BA σ⃗2D (Σx
rel)

−1
BA, σ⃗2D is the

2D-vector of Pauli matrixes,

̂⃗pAB = (Σx
rel)BA

̂⃗p (Σx
rel)

−1
BA ,̂⃗p is the momentum operator, transformation 2D

matrices (Σx
rel)BA , (Σx

rel)AB are determined by

an exchange interaction term Σx
rel (3.35, 3.36,

3.37), p⃗AB is an eigenvalue of the operator ̂⃗pAB:
p⃗AB = ⟨χ̃| ̂⃗pAB |χ̃⟩.

In Figs. 3, 4 it is shown as the unit
circumference p⃗ : |p⃗| = 1 is transformed under
the action of exchange operators:

(Σx
rel)AB p⃗ (Σx

rel)
−1
AB , (4.2)

(Σx
rel)BA (Σx

rel)AB p⃗ (Σx
rel)

−1
AB (Σx

rel)
−1
BA (4.3)

(Σx
rel)AB (Σx

rel)BA (Σx
rel)AB p⃗ (Σx

rel)
−1
AB (Σx

rel)
−1
BA (Σx

rel)
−1
AB . (4.4)

Transformations (4.2) and
(Σx

rel)BA p⃗ (Σx
rel)

−1
BA deform the circumference

into extremely elongated ellipses rotated on angle

90◦ in respect to each other (see Fig. 3).
As one can see from Fig. 4, the

transformation (4.3) of already highly stretched
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1

2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

FIG. 3. Transformations of circumference p⃗ : |p⃗| =
1 in momentum space into ellipses under the action
of exchange operators: (Σx

rel)AB p⃗ (Σx
rel)

−1
AB (1) and

(Σx
rel)BA p⃗ (Σx

rel)
−1
BA (2) respectively. (in color)

ellipse in Fig. 4a leads to π/2 rotated and
further stretched one in Fig. 4b, whereas the
transformation (4.4) restored original orientation
of the ellipse (and again stretches it) in Fig. 4c.

The equation (4.1) gives the band structure
shown in Fig. 5a. The band structure of the
graphene model is symmetric in respect to
electrons and holes. Dispersion law for 2D-
graphene in the vicinity of Dirac point KA(KB)
of Brillouin zone is linear in this model, and
appropriate valent band and conductivity bands
have the form of cones called Dirac cones. Due
to relation (Σx

rel)BA ̸= (Σx
rel)AB, the vector of

the Dirac cone axis is somehow rotated in respect
to the vector p⃗AB of its replica and respectively,
the equations of motion for holes and electrons
in graphene are asymmetric ones. Such a band
structure is stipulated by the rotation of hole
(electron) Dirac cone in respect to electron (hole)
one as schematically shown in Fig. 5b.

Original electron Hamiltonian H
(1)
AB is given

by eq. (4.1). Similar formula for hole Hamiltonian
is obtained from (4.1) by the replacement
BA (AB) → AB (BA). Hamiltonians obtained
under the action of transformations (4.2, 4.3) have

(a)

-2 -1 1 2
qx

-2

-1

1

2

qy

(b)

-2 -1 1 2
qx

-2

-1

1

2

qy

(c)

-15 -10 -5 5 10 15
qx

-10

-5

5

10

qy

FIG. 4. Sequence of transformations of circumference
by exchange operators. (in color)

the form

H
(2)
AB = (Σx

rel)AB H
(1)
AB (Σx

rel)
−1
AB , (4.5)

H
(3)
AB = (Σx

rel)BAH
(2)
AB (Σx

rel)
−1
BA . (4.6)

Now, we look at the action of the exchange
operator applied to sum of electron and hole Dirac
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(a)

(b)

FIG. 5. (a) Partially degenerated Dirac cone in the
vicinity of KA(KB)-point in graphene Brillouin zone.
(b) Scheme of mini Brillouin zone (mBZ) formed due
to rotation of Dirac cone replicas in respect of its
apex.Three replicas of six are shown. (in color)

bands

c
(
Ee (1)

qu (pe) + Eh (1)
qu (ph)

)
, E(1)

qu ≡ Equ (4.7)

where ph = S(ϕ)pe, S(ϕ) is 2D rotation matrix,
ϕ = π/2 in accord with above discussed. The
sum of eigenvalues of transformed Hamiltonians
He(2),Hh(2) is given by

c
(
Ee (2)

qu (pe) + Eh (2)
qu (S(ϕ)ph)

)
, (4.8)

and for the transformed Hamiltonians
He(3),Hh(3) as

c
(
Ee (3)

qu (pe) + Eh (3)
qu (S(ϕ)S(ϕ))ph)

)
. (4.9)

The original sum (4.7) is shown in Fig. 6a.
Provided accounting for the fact that σ⃗AB · p⃗BA is

a helicity operator, the action of (Σx
rel)BA can be

viewed as non-equilibrium transition of a carrier
into a state of same pseudo-spirality, and doubled
action as non-equilibrium forth and back jump.
The appropriate Fig. 6b demonstrates that at
the transformation (4.5), the vicinity of Dirac
point gains a hyperbolic saddle point (compare
the insert in Fig. 6b with the insert in Fig. 6a)
and that the exchange operator action given by
(4.6) leads practically to the same band structure
(Fig. 6c). This allow us to investigate the influence
of substrate as an additional exchange interaction.

5. Results and discussion

Let us consider van der Waals
heterostructures consisting of graphene
monolayers and boron nitride layer or
Ir(1,1,1) one, which have similar to graphene
crystallographic parameters [32].

The effects of charge carriers asymmetry
in graphene stipulate the existence of charge
areas of not annihilated electrons and holes. This
asymmetry of charge carriers in graphene leads
to appearance of hyperbolic states having the
steady state of saddle type on the boundary of
the regions with different types of charge carriers
in accordance with Fig. 6a. Hyperbolic set with
steady state saddle points [33] separates a set of
energy levels of finite motion of localized electrons
and holes upon the levels of infinite motion of
delocalized electrons and holes. Charge carriers
could stay an infinitely long within the hyperbolic
set.

In the superlattice there exists an additional
exchange between electrons in graphene and
electrons of other non-graphene layers. As it was
pointed out in previous section, in our model
the exchange interaction rotates the spin and
momentum of excitons and additional exchange
Σad
BA will rotate them additionally. In this case,

as we see, the exchange can lead to the loss
of stability of the Dirac point KA, that favors
the appearance of additional direct valley current
∆jaddv, BA. Additional exchange Σad

AB will restore
the electron density distribution generating
additional reverse valley current ∆jaddv, AB. In
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FIG. 6. Action of exchange operators on the sum of electron and hole original and transformed Dirac bands.
(a) Sum of original bands, (b) single action of (Σx

rel)BA, (c) action of exchange operators product
(Σx

rel)AB (Σx
rel)BA restoring the system. Insert in (a) demonstrates that the steady state point in KA(KB) is

of center type. Insert in (b) shows an occurrence of a saddle point. (d, e) "Moire" pattern of AFM image
experimentally observed in [34] for: (d) ideal heterostructure, (e) crystal lattices of two heterostructure layers are
rotated on a small angle in respect to each other. (in color)

graphene, the direct and reverse valley currents
compensate each other. Due to mismatch of
crystal lattices we have ∆jaddv, BA + ∆jv, addAB ̸= 0,
and therefore graphene gains additional charge
∆Q.

In accordance with Fig. 6a on distances
qmoire = {qmoire

x , qmoire
y } ≈ {0.06KA, 0.06KA}

and more from the Dirac point KA(KB),
density of localized states increases greatly

and when approaching to this point the
density of hyperbolic set increases. Therefore
∆Q with larger probability is redistributed
in the vicinity of saddle type hyperbolic
points. In the regions of finite motion charge
carriers have some pseudo-angular momentum.
Contrary to this, for free charge carriers the
value of this momentum is zero. Therefore,
in spite of instability of saddle points, the
angular momentum conservation law forbids the
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transition of delocalized charge carriers into
regions of finite motion and, respectively charge
distribution ∆Q over hyperbolic set is stable.

The period qmoire in the space of inverse
lattice corresponds to a period λmoire =
2π/qmoire ∼ 2πa/0.06 = 15.8 nm of
electron density distribution in real 2D-space of
monolayer. Here a = 1.44 Å is a distance between
nearest C atoms. This numerically simulated
effect of electron density redistribution has a form
of "moire" pattern in Fig. 6a. The described
process of "moire" pattern appearance is a
dynamic one. The electron density in periodic
potential of substrate periodically undergoes the
sequence of impacts: {ΣABΣ

ad
AB ≡ Σ′

AB ≈
ΣAB, Σ

′
BA, Σ

′
AB}, returning to distribution only

slightly different from original one shown in
Fig. 6a.

If the potential of the substrate deviates
slightly from the periodic one, the angle of
rotation due to the exchange can increase, e.g.,
as Σad

BAΣAB ≡ Σ′
BA ≈ ΣBA. Due to the fact that

now the sequence of impacts: {Σ′
BA, Σ

′
AB, Σ

′
BA}

is finished on the additionally rotated exchange
Σ′
BA, leading to stability break of the Dirac

point KA, in this case the electron density
distribution restores periodically with rhombic
symmetry which one can see in Fig. 6b. All
the rest cases are related to situations when
the angle of rotation in graphene and total
angle of exchange stipulated rotation both in
graphene and substrate are incommensurable.
Because of incommensurate of phases for natural
oscillations of the system and external shocks
electron density distribution does not restore.
The consequence of this incommensurability is
a chaotical perturbation of the electron density
distribution in graphene, and, respectively, the
"moire" pattern is absent.

"Moire" pattern was observed
experimentally in [35, 36]. The numerically
calculated period λmoire ∼ 15.8 nm is near to
experimentally measured period 15±1 nm of
"moire" pattern [34] at coincidence of direction
of crystallographic axes (θ = 0) in superlattice
graphene/BrN. Here θ is the angle of rotation
of crystallographic axes of graphene and BrN
lattices.

As one can see from comparison of Figs. 6a, b
and Figs. 6d, e, respectively, theoretical and
experimental patterns of electron density in ideal
superlattice and superlattice with very small
misalignment of crystal lattices are coincided.
For very small rotation angle of the crystal
axes of superlattice layers relative to each
other, the theory predicts a rhombic "moire"
, which is observed experimentally (see Atomic
Force Microscopy (AFM) image in Fig. 6e). For
ideal superlattice the theory predicts hexagonal
"moire" , which is also observed in experiment
(AFM-image in Fig. 6d).

Stability loss of a spin-flip state in the model
N = 3

In this section we propose a mechanism of
reorientation of the spin of the electron density
in graphene by magnetic scatterers, which can
explains the large spin relaxation times in the
graphene monolayers.

External hits exerted on a graphene
electronic subsystem by external magnetic
impurities through exchange interactions,
formally are resulted into transition from one
moving reference frame into another, rotated
relative to the first via transformation Σx

rel, adm.
Let us denote an impurity magnetization vector
through M⃗adm.

According to the results obtained, the
exchange interaction provides two kind of
rotations for spin σ⃗AB and for momentum p⃗BA of
charged exciton. The first kind of rotations gives
the following condition for rotation at small angle:
Σx
nf ≡ Σx

rel, admΣx
AB ≈ Σx

AB. The second kind
of rotation gives the condition of approximate
equality of the total angle of rotation performed
by sequence of kflip magnetic scatterers, to
the angle of rotation, performed by exchange
interaction Σx

BA:
∑kflip

i=1 Σx
nfi

≡ Σx
flip ≈ Σx

BA.
Exchange Σx

nf creates a nonequilibrium valley
current with an orbital angular momentum L⃗AB

and precessing spin σ⃗ ′
AB = Σx

nf σ⃗
(
Σx
nf

)−1
. The

emerging total magnetic moment J⃗D = σ⃗′ + L⃗AB

tends to compensate the vector of the impurity
magnetic susceptibility M⃗adm: J⃗D = −M⃗adm .

Exchange Σx
flip leads to instability of those
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states, which spin could carry flip. Due to

instability of Σx
flipσ⃗AF

(
Σx
flip

)−1
only narrowing

of the spin distribution of states of graphene
occurs, rather than their magnetic ordering. As
a consequence, in ideal situation this means that
the time of spin relaxation increases indefinitely.

Thus, the mechanism of instability of spin-
flip states in graphene has been proposed.

6. Conclusion

Let we summarize our findings. A model
of graphene with the number of internal degrees
of freedom N = 3 has been proposed, in

which charge carriers are charged excitons. It is
shown that in this model there exists mechanism
of dynamic reductions of spatial dispersion of
state and narrowing of the distribution of spin
states. This dynamic reduction provides longer
duration of the pseudo-spin rotation caused
by exchange with external magnetic scatterers.
Peculiarities of this process in graphene has
been established. They consist in generation
of additional valley currents and hence of
magnetic magnetization that compensates vector
of impurity magnetization without loss of stability
of the charge carrier spin state. A condition is
found under which the spin flip occurs.
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Eds. J. Bonča, S. Kruchinin. (Springer
Science+Business Media, Dordrecht, 2015).
Pp. 21-31. DOI 10.1007/978-94-017-9005-5-3.

[28] H.V. Krylova. Electric charge transport and
nonlinear polarization of periodically packed

structures in strong electromagnetic fields.
(Publishing Center of BSU, Minsk, 2008).

[29] Halina Krylova, Leonid Hursky. Spin polarization
in strong-correlated nanosystems. (LAP
LAMBERT Academic Publishing, AV
Akademikerverlag GmbH & Co., Germany,
2013).

[30] H.V. Grushevskaya, L.I. Hurskiy. Polarization
effects of many-electron atom in electron–hole
formalizm. Report of BSUI& R. No. 3, 5-17
(2007).

[31] G.V. Grushevskaya, L.I. Gursky, P.N.
Luskinovich, I.A. Lubashevskii. Effects of
Spatial Distribution of the Electron Density
Functional in Crystals. Bulletin of the Lebedev
Physics Institute. 34, 127-134 (2007).

[32] C.R. Dean, A.F. Young, I. Meric. Boron nitride
substrates for high-quality graphene electronics
// Nature Nanotechnology. 5, 722 (2010).

[33] I.A. Kovalew, D.W. Serow. Illustrations of
Irreducibility and Tops of Umbrellas in the
PostScript Methodology. J.Nonlin. Phenom. in
Complex Sys. 17, 318–326 (2014).

[34] Zhi-Guo Chen, Zhiwen Shi, Wei Yang, Xiaobo
Lu, You Lai, Hugen Yan, Feng Wang, Guangyu
Zhang, Zhiqiang Li. Observation of an intrinsic
bandgap and Landau level renormalization in
graphene/boron-nitride heterostructures. Nature
Communications. 5, 4461 (2014) DOI: 10.1038

[35] I. Pletikosic, M. Kralj, P. Pervan, R. Brako,
J.Coraux, A. T. N’Diaye, C. Busse, T. Michely.
Dirac Cones and Minigaps for Graphene on
Ir(111). Phys. Rev. Lett. 102, 056808 (2009),
arXiv: 0807.2770v2 [cond-mat.mtrl-sci] 13
Feb2009.

[36] C. R. Woods, L. Britnell, A. Eckmann, R. S.
Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu,
Y. Cao, R. V. Gorbachev, A. V. Kretinin, J.
Park, L. A. Ponomarenko, M. I. Katsnelson,
Yu. N. Gornostyrev, K. Watanabe, T. Taniguchi,
C. Casiraghi, H-J. Gao, A. K. Geim, K.
S. Novoselov. Commensurate–incommensurate
transition in graphene on hexagonal boron
nitride. Nature Physics. 10, 451-456 (2014).
doi:10.1038/nphys2954

Нелинейные явления в сложных системах Т. 18, № 1, 2015


