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Maslov’s inverse method is an automated theorem proving method: it can be used
to develop computer programs that prove theorems automatically (such programs are
called theorem provers). The inverse method can be applied to a wide range of logical
calculi: propositional logic, first-order logic, intuitionistic logic, modal logics etc. We give
a brief historical background of the inverse method, then discuss existing modifications and
implementations of the inverse method for non-classical logics (intuitionistic logic, modal
logics and some other logics).

We introduce a variant of the inverse method for intuitionistic logic - a logic that allows
only constructive proofs, i.e. proofs that construct an existing mathematical object instead of
just establishing the fact that such an object exists. In short, intuitionistic logic can be seen
as classical logic without the law of excluded middle A ∨ ¬A or the law of double negation
elimination ¬¬A ⊃ A. So, classical proofs by contradiction are not allowed in intuitionistic
logic. We discuss our experimental program implementation of the inverse method for
intuitionistic logic: some details of implementation, results of experiments on ILTP problems
(ILTP is a common library of test problems for intuitionistic theorem provers).
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1. Introduction

Maslov’s inverse method [1] is a forward-
chaining theorem proving method (it constructs
proofs in forward direction, from axioms to the
goal formula).

Originally, the inverse method was
developed by S. Maslov for a fragment of
first-order logic. Later it was extended by its
author on a broad range of logical calculi.
More precisely, the method is applicable to any
calculus that satisfies the subformula property
(the definition is given in the following chapter).

The inverse method has not became as
widespread as currently well-known theorem
proving techniques: resolution-based methods
(described in [2] and [3]) and tableaux methods
(for example, in [4]). However, it seems that the
inverse method is currently underestimated. In
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comparison with tableaux methods which start
a proof from the goal formula and try to reduce
it to the axioms, Maslov’s method constructs a
proof in the opposite direction. So, the inverse
method can perform better on some kinds of
problems that are hardly solved by tableaux
methods. If compared with resolution, the inverse
method has a larger area of application. That
is why exploration of existing inverse method
modifications and development of more efficient
variants of the method is an actual research task.

2. Preliminary definitions

We assume that readers of the present article
are familiar with basic concepts connected with
first-order logic and formal proof methods. We
recommend books [2, 4] and [3] for introduction as
well as for deeper knowledge of the topic. In this
chapter, we place the most important definitions
for convenience. We use an abbreviation “iff” for
"if and only if".
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Logical calculus is a formalization of some
logical theory.

First-order logic is a logical calculus which
is build upon predicates (assertions, in other
words) that depend on variables.

In the current article, we use the following
first-order logic language symbols: logical
connectives ¬, ∧, ∨, ⊃; quantifiers ∀, ∃; logical
constants ⊥ (logical false), ⊤ (logical true);
predicate symbols P , Q, R, etc.; individual
constants c, d; variables x, y, z, v etc.; function
symbols f , g, h; symbols for arbitrary terms (r,
s, t); symbols for arbitrary formulas (A, B, C
etc.).

All non-operator symbols (operators include
only connectives, quantifiers and constants ⊥, ⊤)
can be enumerated by subscript indexes.

Term is a language construction defined by
the following rules:

• a variable is a term;

• an individual constant is a term;

• if f is a function symbol and t1, . . . , tn are
terms, then f(t1, . . . , tn) is a term.

No other terms exist except terms that can be
generated by the rules listed above.

Atomic formula (or predicate) is a
formula of the form P (t1, . . . , tn), where P is a
predicate symbol, t1, . . . , tn are terms.

Prime formula is either an atomic formula
or one of the constants ⊥, ⊤.

Literal is either an atomic formula or a
negation of atomic formula.

Formula is defined by the rules:

• a prime formula is a formula;

• if A is a formula, then ¬A is also a formula;

• if A and B are formulas, then A∧B, A∨B,
A ⊃ B are formulas;

• if A is a formula and x is a variable, then
∃xA and ∀xA are formulas.

No other formulas exist except formulas that can
be generated by the rules above.

An important concept in logic is
interpretation . Interpretations in classical
and intuitionistic first-order logics are different.
An interpretation of a formula F in classical logic
consists in specifying non-empty domain D and
mappings of all individual constants, functional
and predicate symbols from F on the domain D.

Truth value of the formula F can be
calculated for each particular interpretation
according to the logical properties of operators
(construction ∀x is interpreted as "for all elements
x from D ∃x is interpreted as "exists an element
x from D").

In classical first-order logic, a formula is
valid iff it is true in all interpretations (otherwise
the formula is invalid).

Intuitionistic logic rejects the concepts of
truth and falsity, and is usually interpreted in
terms of provability: a formula F is valid iff it has
a constructive proof (i.e. has a direct evidence)
[3], otherwise it remains unknown whether F is
valid or invalid.

Another important concept is derivability .
Each logical calculus includes a set of axioms
and inference rules (this set is sometimes called
a proof system) which allow to derive one
facts from other facts in a pure syntactical (i.e.
independent of interpretation) way. A statement
derivable iff it can be deduced from the axioms
using the inference rules. The corresponding proof
is called a derivation.

A logical theory is sound , iff every derivable
formula is valid. An opposite notion of complete
calculus requires that every valid formula is
derivable in the calculus. In classical first-
order logic (as well as in intuitionistic), various
proof systems can be used. But soundness and
completeness are those properties that allow to
decide whether a logical calculus is desirable or
not.

Finite multiset is a collection of formulas
A1, . . . , An in which order of formulas is
irrelevant, and which can contain multiple copies
of the same formula.

Sequent is a conditional assertion of the
form Γ ⊢ ∆ where Γ, ∆ are finite multisets. A
sequent includes two parts: an antecedent Γ, and
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The Inverse Method Application for Non-Classical Logics 183

a succedent ∆. A sequent

A1, . . . , An ⊢ B1, . . . , Bm (1)

can be understood as "if A1 and . . . and An

hold, then B1 or . . . or Bm holds". Sequent 1 is
equivalent to the formula

F = (A1 ∧ . . . ∧An) ⊃ (B1 ∨ . . . ∨Bm). (2)

Sequent calculus is a logical calculus where
derivable objects are sequents.

Single-succedent calculus is a sequent
calculus in which derivable sequents can contain
at most one formula in the succedent. In
Multi-succedent calculus derived sequents may
contain multiple formulas in the succedent.

A logical calculus satisfies the subformula
property iff for any formula that is derivable in
the calculus, there exists a derivation in which all
formulas are subformulas of the goal formula.

3. Historical backgrounds

The first Maslov’s work is dated to 1964
[1]. In that short article, Maslov proposed the
deduction search method for a first-order logic
formulas of the form

Q1x1 . . . Qnxn (D1 ∧ . . . ∧Dk) . (3)

In Formula 3, Q1, . . . , Qn are quantifier symbols,
{x1, . . . , xn} is a set of all variables in (3), all
Di, i = 1, . . . , k are disjunctions of the form
L1 ∨ . . . ∨ Lm, where L1, . . . , Lm are literals. The
main advantage of the method was emphasized in
the first Maslov’s work: it essentially uses special
features of the goal formula that has to be proved.

So, Maslov’s invention was too outstanding
discovery to be missed completely. S. Maslov
and his associates continued to develop the
inverse method. In the article dated to 1967
[11], Maslov extended his method from prenex
formulas (3) to arbitrary first-order logic formulas
with functional symbols. The ideas for that
modification were rather conceptual; so, further
detailing was needed.

Early publications on the inverse method [1,
11] are rather brief, and present only the general
idea without important details. Furthermore,
they are mostly concentrated on its theoretical
aspects.

The inverse method general scheme for cut-
free sequent calculi (i.e. calculi without the
cut rule) satisfying subformula property was
proposed later [12]. This general scheme can
be used to specify the inverse method versions
for different logical calculi including non-classical
logics: modal logics, intuitionistic logic etc.

The article [12] contains detailed description
of the underlying theory, presents several
examples of using the method for different logics,
and illustrates how to use the inverse method both
as a proof-search and as a decision procedure. A
decision procedure for a certain class of formulas
is an algorithm that takes an arbitrary formula
from this class and necessarily terminates with
an answer “yes” or “no” depending on the formula
derivability.

Specification of the general scheme for first-
order logic with function symbols is discussed in
detail in [14]. This publication covers permissible
proof strategies for the inverse method and
completeness proofs for different variants of the
method.

Most of publications mentioned above use
special terminology that was introduced by
S. Maslov. There exist several other articles
that describe the inverse method using terms
commonly used in publications on other methods.
Among them are publications in Russian ([15, 16])
and in English ([7, 10, 19]) which we recommend
for introduction to the inverse method. In [16],
the inverse method is outlined in appendix by
S. Maslov and G. Mints. The two alternative
formulations of the method for first-order logic
formulas are given. In [19], G. Mints restates
the same formulation of Maslov’s method in
a simple and understandable way, presents the
short proof of its completeness, and illustrates
how to obtain decidability proofs by the
inverse method. V. Lifschitz in [10] reports on
resolution-like inverse method modifications for
propositional logic and first-order logic (the term
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"resolution-like" reflects similarity to resolution-
based techniques). The article also contains
important background, historical information and
review of results achieved by S. Maslov and his
associates.

Authors of the publication [7] discuss the
inverse method in detail concentrating mostly
on resolution-like modifications of the method.
In Section 3, they formulate the inverse method
modification for refuting arbitrary first-order
logic formulas and demonstrate how to reduce
the inference rules number if input formulas
are in a negation normal form. Section 4
describes applying Maslov’s method to non-
classical logics: intuitionistic logic and modal
logics. In the subsequent sections, authors
illustrate connections between the inverse method
and resolution inferences, show how to adopt
some proof search strategies from resolution to
the inverse method, discuss some actual research
problems connected with Maslov’s method (e.g.
creation efficient implementations and obtaining
simpler completeness proofs). Probably, this
article is the most comprehensive publication on
the inverse method except the original Maslov’s
work [12].

On the one hand, several publications
discuss theoretical applications of the inverse
method connected with discovering decidable
classes of formulas. S. Maslov and his colleagues
used the method as a decision procedure to
establish decidability of some classes which were
either known or previously undiscovered [1, 11,
12], [10, 19]. On the other hand, very poor
information is available about actual inverse
method implementations in theorem-proving
programs. The article [5] describes a program that
was developed in the 1960th at the Leningrad
Branch of the Steklov Mathematics Institute.
That program ran on BESM-6 computer and
contained about 10000 commands ([5], also [10]).
Authors of the article [24] briefly describe another
program named LISS that used the inverse
method. In [23], a resolution-like implementation
of the inverse method for intuitionistic logic
is presented, and several search strategies are
explored. A theorem prover Imogen [18] is claimed

to be the most efficient prover for intuitionistic
logic. Authors confirm this assertion by the test
results on a large set of problems from the
ILTP library [22]. However, Imogen prover is not
presented yet in the publicly available list of ILTP
tested systems and their results.

Applications of the inverse method to first-
order logic with equality can be found in [6, 13].
Along with already mentioned articles, there exist
other publications on the inverse method for non-
classical logics, e.g. logic of bunched implications
[8], and many-valued logics [9].

4. A multi-succedent inverse
method calculus for intuitionistic logic

4.1. Additional Definitions

Before proceeding to the inverse method
calculus, we need to introduce some more
definitions. Most of these definitions can also be
found in [7].

Substitution is a finite mapping from
variables to terms, denoted by {x1/t1, . . . , xn/tn}.
In the definition, all variables xi are different
and xi ̸= ti for all i = 1, . . . , n. Domain of
a substitution θ, denoted by dom(θ), is a set
{x1, ..., xn}. The empty substitution ε is the
only substitution with empty domain.

Let E be an arbitrary expression. For a
substitution θ = {x1/t1, . . . , xn/tn}, Eθ denotes
the result of simultaneously substituting the
terms t1, . . . , tn for the variables x1, . . . , xn in the
expression E. If we use a variable x in notation
E(x), then E(t) will denote the expression
E {x/t}. Notation E [x/t] means exactly the
same.

A construction σ−x denotes the substitution
with dom(σ−x) = dom(σ) \ {x}

An occurrence of a variable x in expression
E is called bound iff this occurrence is in
construction ∀x or ∃x or inside the scope of such
a quantifier. An occurrence of a x in E is free iff
it is not bound. A variable is free in E iff it occurs
free in E. A variable is bound in E iff it occurs
bound in E.
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A term t is free for a variable x in
in a formula F , iff no variable from t becomes
bound by any quantifier in F , after replacing all
occurrences of v by t.

Let var(F ) be the set of all variables,
free(F ) be the set of free variables in the formula
F .

Ground (closed) formula F is a formula
without free variables, i.e. free(F ) = ∅.

A formula F is rectified iff every quantifier
in F binds a different variable, and every bound
variable of F not occurs free in F .

A substitution θ is a unifier of F1 and F2

iff F1θ = F2θ. Two formulas are called unifiable
iff they have a unifier. A unifier θ is the most
general unifier for F1 and F2 iff the following
condition holds: for any other unifier σ there
exists a substitution τ such that θτ = σ.

A most general unifier of substitutions
σ and τ is the most general unifier of the
ordered sets (x1σ, . . . , xnσ) and (x1τ, . . . , xnτ),
where {x1, . . . , xn} = dom(σ) ∪ dom(τ).

Formulas F1 and F2 are variable-disjoint
iff free(F1) ∩ free(F2) = ∅.

Renaming is a substitution which is a one-
to-one mapping from its domain to itself. A
renaming θ renames away F1 from F2 iff F1θ
and F2 are variable-disjoint.

Formulas F1, F2 are weakly unifiable iff
F1θ and F2 are unifiable, where θ renames away
F1 from F2.

Immediate subformulas and immediate
free subformulas . If a formula F has the form
A ∧ B, A ∨ B, or A ⊃ B, then A and B are
immediate (free) subformulas of F . Immediate
(free) subformula of ¬A is A. In formulas of
the form ∀xA(x) and ∃xA(x), immediate free
subformula is A(x); immediate subformula is
A(t), t is an arbitrary term. So, immediate
and immediate free subformulas differ only for
formulas of the latter type.

Subformulas, free subformulas and their
signs are defined inductively. Let F be an
arbitrary formula. Then F is a (free) subformula
of itself, and F is positive in itself. Let G1 be a
(free) subformula of F , and G2 be an immediate
(free) subformula of G1. Then G2 is a (free)

subformula of F . The sign of G2 is the same as
the sign of G1, except the cases when G1 has
the form G2 ⊃ B or ¬G2. In that cases, G2 has
the opposite sign: if G1 is positive subformula in
F , then G2 is negative subformula in F and vice
versa.

As we will introduce a calculus that not
contains negations as a primitive, we assume that
the following abbreviations are used:

¬A ≡ A ⊃ ⊥
⊤ ≡ ⊥ ⊃ ⊥

4.2. A calculus for ground formulas

The article [7] introduces the inverse method
calculus for intuitionistic logic which is based
on the calculus G3 by Kleene [4]. This variant
allows to infer sequents that have at most one
formula in the succedent. We designed another
variant of the inverse method calculus based on
the multi-succedent sequent calculus m-G3i from
[3]. Multi-succedent calculus can benefit from
a single-succedent calculus since proofs in the
former calculus can be shorter. We applied a
"universal recipe" of automated deduction from
[7]. According to this recipe, the first step is
to obtain a calculus for closed formulas. We
developed such a sequent calculus named m-G3i-
inv-ground.

In all the rules below, premises and
conclusions are sequents. In the rule Px, P is
an atomic formula. In the rules L ∃ and R ∀,
the variable y satisfies the so-called eigenvariable
condition: y is not free in the conclusion of the
rule, and y is free for x in A(x).

Px P ⊢ P L⊥ ⊥ ⊢

LC
Γ, A,A ⊢ ∆

Γ, A ⊢ ∆
RC

Γ ⊢ ∆, A,A

Γ ⊢ ∆, A

L∧1
Γ, A ⊢ ∆

Γ, A ∧B ⊢ ∆
L∧2

Γ, B ⊢ ∆

Γ, A ∧B ⊢ ∆
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R∧ Γ1 ⊢ ∆1, A Γ2 ⊢ ∆2, B

Γ1,Γ2 ⊢ ∆1,∆2, A ∧B

L∨ Γ1, A ⊢ ∆1 Γ2, B ⊢ ∆2

Γ1,Γ2, A ∨B ⊢ ∆1,∆2

R∨1
Γ ⊢ ∆, A

Γ ⊢ ∆, A ∨B
R∨2

Γ ⊢ ∆, B

Γ ⊢ ∆, A ∨B

L ⊃ Γ1 ⊢ ∆1, A Γ2, B ⊢ ∆2

Γ1,Γ2, A ⊃ B ⊢ ∆1,∆2

R ⊃1
Γ ⊢ B

Γ ⊢ A ⊃ B
R ⊃2

Γ, A ⊢
Γ ⊢ A ⊃ B

R ⊃3
Γ, A ⊢ A ⊃ B

Γ ⊢ A ⊃ B

L∀ Γ, A[x/t] ⊢ ∆

Γ, ∀xA ⊢ ∆
R ∀ Γ ⊢ A[x/y]

Γ ⊢ ∀xA

L∃ Γ, A[x/y] ⊢ ∆

Γ, ∃xA ⊢ ∆
R ∃ Γ ⊢ ∆, A[x/t]

Γ ⊢ ∆, ∃xA

Calculus m-G3i-inv-ground

The calculus m-G3i is suitable for tableau-
based methods that make proof search in a
backward direction (from the goal formula to
the axioms). Since the inverse method constructs
proofs in a forward direction, we had to change
some rules of the original calculus m-G3i to make
it suitable for a forward proof search. So, the rules
of these two calculi are essentially different.

Let us note the most important differences
between the introduced calculus m-G3i-inv-
ground and the calculus Iinv from [7] (except the
difference in notation used):

• the calculus m-G3i-inv-ground is multi-
succedent while the calculus Iinv is
single-succedent, so there is no need to
use additional rules for conjunction and
disjunction;

• in the calculus m-G3i-inv-ground, "⊥"is
used as a primitive instead of "¬"

The calculus m-G3i-inv-ground is sound
since all rules satisfy the following property: if all
premises of a rule are intuitionistically valid, then

so is a conclusion. Completeness of m-G3i-inv-
ground can be established in the similar way as it
done in [7]: by exploiting the completeness of the
calculus m-G3i and proving that every formula
derivable in m-G3i is also derivable in m-G3i-inv-
ground.

4.3. A free-variable calculus

Finally, we define a free-variable inverse
method calculus for intuitionistic logic m-G3i-
inv. Suppose that we have a goal formula F that
is closed and rectified. By a given formula F ,
we build the inverse method caclulus where all
formulas in the inference rules are subformulas of
F .

Sequents in the following description
slightly differ from conventional sequents and
have the form:

A1 · θ1, . . . , An · θn ⊢ B1 · σ1, . . . , Bm · σm (4)

In the formula 4, all Ai are negative free
subformulas of F , all θi are substitutions (i =
1, . . . , n); all Bj are positive free subformulas of F ,
all σj are substitutions (j = 1, . . . ,m); "·" denotes
the operation of substitution.

In the rule Px, P , and Q are weakly unifiable
atomic subformulas of F , ρ renames away P from
Q, and τ is a most general unifier of formulas Pρ
and Q. In each rule, the premises are variable-
disjoint with each other as well as with var(F ).

In all the rules, a substitution θ is the most
general unifier of σ1 and σ2. In the rules L ∃ and
R ∀, the eigenvariable condition holds for the term
xσ: xσ is a variable not occurring free in the
conclusion of the rule.

Px P · ρτ ⊢ Q · τ L⊥ ⊥ ⊢

LC
Γ, A · σ1, A · σ2 ⊢ ∆

Γθ,A · σ1θ ⊢ ∆θ

RC
Γ ⊢ ∆, A · σ1, A · σ2
Γθ ⊢ ∆θ,A · σ1θ
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L∧1
Γ, A · σ ⊢ ∆

Γ, A ∧B · σ ⊢ ∆
L∧2

Γ, B · σ ⊢ ∆

Γ, A ∧B · σ ⊢ ∆

R∧ Γ1 ⊢ ∆1, A · σ1 Γ2 ⊢ ∆2, B · σ2
Γ1θ,Γ2θ ⊢ ∆1θ,∆2θ,A ∧B · σ1θ

L∨ Γ1, A · σ1 ⊢ ∆1 Γ2, B · σ2 ⊢ ∆2

Γ1θ,Γ2θ,A ∨B · σ1θ ⊢ ∆1θ,∆2θ

R∨1
Γ ⊢ ∆, A · σ

Γ ⊢ ∆, A ∨B · σ
R∨2

Γ ⊢ ∆, B · σ
Γ ⊢ ∆, A ∨B · σ

L ⊃ Γ1 ⊢ ∆1, A · σ1 Γ2, B · σ2 ⊢ ∆2

Γ1θ,Γ2θ,A ⊃ B · σ1θ ⊢ ∆1θ,∆2θ

R ⊃1
Γ ⊢ B · σ

Γ ⊢ A ⊃ B · σ
R ⊃2

Γ, A · σ ⊢
Γ ⊢ A ⊃ B · σ

R ⊃3
Γ, A · σ1 ⊢ A ⊃ B · σ2
Γθ ⊢ A ⊃ B · σ2θ

L∀ Γ, A · σ ⊢ ∆

Γ, ∀xA · σ−x ⊢ ∆
R ∀ Γ ⊢ A · σ

Γ ⊢ ∀xA · σ−x

L∃ Γ, A · σ ⊢ ∆

Γ, ∃xA · σ−x ⊢ ∆
R ∃ Γ ⊢ ∆, A · σ

Γ ⊢ ∆, ∃xA · σ−x

Calculus m-G3i-inv

The calculus m-G3i-inv includes two axioms:
Px and L⊥. If a sequent was derived by one of
the axioms, it is called an initial sequent.

The above calculus is augmented with an
implicit renaming rule (ρ is a renaming):

Γ ⊢ ∆

Γρ ⊢ ∆ρ
(5)

Completeness of m-G3i-inv can be shown by
comparing it with m-G3i-inv-ground and using
instance lemma as it done in [7].

In a program implementation of the inverse
method, it can be convenient to use the
stronger form of the eigenvariable condition:
xσ is a variable not occurring (free or bound)
in the conclusion of the rule. Though the
difference between the two definitions seems
to be insignificant, the stronger form of the
eigenvariable condition should be used with care.

For example, let us consider intuitionistically
valid formula

G = ∀x ∀y (P (x) ⊃ P (x)).

In the formula G, the variable y is
quantified but unused. We start to construct the
inverse method calculus for the formula G with
identifying all free subformulas of G and their
signs (we give each free subformula a unique name
to refer to):

Free subformula Sign Name

∀x ∀y (P (x) ⊃ P (x)) positive G

∀y (P (x) ⊃ P (x)) positive G1

P (x) ⊃ P (x) positive G2

P (x) negative G3

P (x) positive G4

Free subformulas of G

First of all, logical false constant ⊥ not
occurs in the formula G, so the axiom L⊥ is not
applicable. Next, there are only two atomic free
subformulas, namely G3 and G4. Since G3 and
G4 have opposite signs and are weakly unifiable,
we can apply the rule Px and derive one (and
only one possible) initial sequent:

1. P (x) · ε ⊢ P (x) · ε

Since G includes only one (positive)
connective ⊃ and (positive) quantifiers ∀, we
can restrict the inverse method calculus to four
selected rules: R ⊃1, R ⊃2, R ⊃3 and R ∀. The
rule R ⊃1 can be applied to the Sequent 1,
as subformulas G3 and G4 from the Sequent 1
are immediate free subformulas of G2. Other
rules are not applicable, e.g., R ∀ cannot be
applied because the Sequent 1 does not contain
immediate free subformulas of G or G1. Before
applying R ⊃1, we need to rename a variable x
in the Sequent 1 as var(G) = {x} includes this
variable. So we derive the following intermediate
sequent:

1∗. P (x) · {x/v1} ⊢ P (x) · {x/v1}
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Then we apply R ⊃1 directly to the
Sequent 1∗:

2. ⊢ (P (x) ⊃ P (x)) · {x/v1}

A free subformula P (x) ⊃ P (x) from the
Sequent 2 is an immediate free subformula of G1.
If we apply the rule R ∀ to the Sequent 2, the
conclusion will have the following form:

3∗∗. ⊢ ∀y (P (x) ⊃ P (x)) · {x/v1}

Now we need to check the stronger form of
eigenvariable condition: a variable y{x/v1} = y
not occurs in a Sequent 3∗∗. This condition does
not hold, so we need to discard the Sequent 3∗∗.
No other rules can be applied to the Sequent 2.
Indeed, rules R ⊃2 and R ⊃3 are not applicable
because antecedent of the Sequent 2 is empty.
The rule R ⊃1 is not applicable too: Sequent 2
contains the single free subformula G2, and G2 is
the only free subformula of G that has the form
A ⊃ B. So theorem-proving process terminates.

However, if we use the weaker eigenvariable
condition, the proof can be completed in two
steps:

3. ⊢ ∀y (P (x) ⊃ P (x)) · {x/v1}

4. ⊢ ∀x ∀y (P (x) ⊃ P (x)) · ε

A Sequent 3 is derived from the Sequent 2
by R ∀ (eigenvariable condition holds: a variable
y{x/v1} = y not occurs free in the Sequent 3);
a Sequent 4 is derived from the Sequent 3 by
R ∀ (eigenvariable condition also holds: a variable
x{x/v1} = v1 not occurs free in the conclusion).

In summary, G cannot be proved in m-G3i-
inv with the stronger eigenvariable condition,
so the calculus becomes incomplete. To make
it complete, one need to add a restriction that
the goal formula does not contain unused bound
variables (i.e. for any variable v that is bound
by some quantifier, v occurs at least once within
the scope of this quantifier). Any formula can
be transformed into the appropriate form by
eleminating quantifiers that bind such unused
variables.

The calculus m-G3i-inv can be modified by
adding rules for negation operators:

L¬ Γ ⊢ A · σ
Γ,¬A · σ ⊢

R¬ Γ, A · σ ⊢
Γ ⊢ ¬A · σ

One need to change axioms accordingly: remove
L⊥; and allow P and Q in the axiom Px to be
any prime formulas (i.e. either atomic or ⊥).

The modified calculus can be more efficient
on formulas with negations. We denote the inverse
calculus with negation as m-G3i-inv+.

5. Details of experimental
implementation

We extended an experimental theorem
prover for classical logic ([20, 21]) with
intuitionistic part. Our program is capable of
proving theorems in the developed intuitionistic
inverse method calculus m-G3i-inv, as well as
in m-G3i-inv+. Our prover works on arbitrary
intuitionistic first-order (and propositional)
formulas. It can solve problems given by a set
of premises A1, . . . , An and a set of conclusions
B1, . . . , Bm.

Since the inverse method is incomplete for
proving arbitrary sequents [7], our program firstly
transforms a given problem into an equivalent
formula 2. The goal formula F must be closed
to prove it using the inverse method (the goal
formula is proved iff the sequent ⊢ F was derived).

Next, the goal formula is rectified: bound
variables are renamed to obtain a formula
where each quantifier binds a different variable.
All quantifiers that bind unused variables are
eliminated. For the calculus m-G3i-inv that has
a primitive "⊥" instead of "¬we replace all
occurrences of formulas "¬A" with "A ⊃ ⊥".

An implemented inference loop is a variant
of the given clause algorithm [17] adapted
for proving sequents. All derived sequents are
divided into two sets: usable set (contains
passive sequents) and set of support (with active
sequents). At every iteration, the program selects
the given sequent from the set of support. Then
the program applies all inverse method calculus
rules with the given sequent as one of the
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premises; if applied rule has two premises, other
premise is selected from the usable list.

We run our prover on 279 selected test
problems from ILTP library [22]. Proof time for
each problem was limited by 3 seconds. The
prover solved 164 problems, including 104 proved
theorems and 60 refuted assertions (a formula
is refuted iff all possible derivations by the
inverse method were made and the goal formula
was not derived). All proof results were correct:
only intuitionistically valid formulas were proved
and only non-valid formulas were refuted. Tests
were run on a computer with Intel Core 2 Duo
2.67 GHz processor and 3 Gb RAM.

Our prover is implemented in C++ and
consists of the following parts:

• class library, which contains classes for
performing all necessary operations on
formulas and sequents;

• class that implement the inference loop;

• classes with sequent calculus specification.

All three parts have independent
implementation, so one can change the inference
loop algorithm (i.e. add some strategies) without
affecting the sequent calculus itself; on the other
hand, rules of the sequent calculus (as well as
order of their application) can be changed with

the inference loop remaining the same. Formulas
(or sequents) transformation algorithms can also
be improved without changing other two parts
of the program. So, our program allows to use
different inverse method calculi and compare
their efficiency.

6. Conclusion

In the current article, we discussed existing
applications of the inverse method for non-
classical logics and presented a variant of the
inverse method for intuitionistic logic. The
novelty of our work is that our calculus
is multi-succedent, in comparison with known
inverse method calculi for intuitionistic logic
(e.g. a calculus from [7]). We also suggested a
modification of the calculus and illustrated some
important details with an example of the proof.
We presented an experimental program that can
automatically prove theorems in the designed
calculus.

Our future plans include implementing more
powerful proof search strategies and extending
our experiments on a larger set of test problems.
It will be fruitful to compare different inverse
method calculi, e.g. multi-succedent calculus with
the single-succedent calculus from [7].
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