
Nonlinear Phenomena in Complex Systems, vol. 19, no. 1 (2016), pp. 62 - 70

Probabilistic Methods for Switching Control in Discrete
Time

S.M. Khryashchev∗
Peter the Great St. Petersburg Polytechnic University, RUSSIA and

St. Petersburg State University, RUSSIA
(Received 10 February, 2016)

Control systems with a finitely many of control settings, i. e. dynamical polysystems, are
considered. It is assumed that a polysystem functions in continuous time and switchings
of control occur in some discrete instants of time. The control goal is a transition of a
polysystem from an initial state to a final state. Controllability of the polysystems is studied.
Probabilistic methods are applied. Some probability characteristics of dynamical polysystems
are defined. It is shown that under the rank condition, the switching controls always exist
and the estimates of control times can be find by numerical methods. The rate of convergence
of estimates of control times is established. The scale of the rates of convergence is described.
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1. Introduction

In this paper, we continue to investigate a
class of continuous-time dynamical polysystems
considered in [1–4]. These polysystem consist of
a finite number of switched dynamical systems.
It is assumed that the switchings occur in
some discrete instants of time. We explore
controllability of dynamical polysystems and find
the control times which provide a sufficient
accuracy of target condition, i. e. provide ϵ -
controllability either with a finite ϵ or with an
arbitrarily small ϵ. In the last case, if the values
of ϵ decrease then the control times become
arbitrarily large. Therefore, for these control
systems, there is a problem to characterize a
rate of convergence of estimates of control times.
This characterizing can be obtained by analysis
of the distribution function of values of control
times. In paper [3], we investigated a class
of polysystems having the uniform distribution
function of control times. In this case, the relative
rate of convergence is inversely proportional to
the rate of growth of control time. In the
present paper, we consider arbitrary distribution
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functions. In this case, we apply the inverse
transformation method and reduce the problem to
the special case of uniform distribution function.
It is shown that for polysystems with an arbitrary
distribution function, the rate of convergence of
estimates of control times can be arbitrarily slow
and arbitrarily fast.

Enough information on theory of dynamical
systems and other topics can be found in [11–14].

2. Definition of a polysystem and
related notions

Let us denote a state space with elements x
by X, a control set with elements u by U, a one-
dimensional space of time points t by R.

For an arbitrary fixed u ∈ U, consider a
family of the maps (diffeomorphisms)

F t
u : X → X, t ∈ R

such that for any x ∈ X

F t1
u (F t2

u (x)) = (F t1+t2
u )(x),

i. e., the family F t
u defines a dynamical system.

Let us to each t ∈ R assign some u ∈ U, i. e.,
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give a function û by formula u = û(t). Then we
say that the set {F t

u, u ∈ U} and the function û
define a dynamical control system.

Next, we consider a finite control set
belonging to the set U. Namely, for an arbitrary
fixed integer l ∈ N and some u1, . . . , ul ∈ U,
consider the set of the one parameters families

{F t
u1
, . . . , F t

ul
}. (2.1)

Let the values tj ∈ R, tj−1 ≤ tj , j = 1, . . . , l,
l ≥ n be time moments of control switching. Thus,
to the time moment tj , it is assigned the element
Fuj of the set given by formula (2.1), i. e. it is
designated the correspondence

tj → uj , j = 1, . . . , l. (2.2)

A restriction of a control system to a finite set
{u1, . . . , ul} =: U0 ⊂ U is called a dynamical
polysystem.

Assume that at t0 ∈ R the polysystem starts
from x0 ∈ X. Consider the space Rl

+ of points τ
in the form

τ = (τ1, . . . , τl) ∈ Rl
+, τj = tj − tj−1 ≥ 0. (2.3)

Thus, the dynamical system Fuj functions during
of time period of length τj . The value

|τ | = |τ1|+ · · ·+ |τl| (2.4)

of the norm of τ ∈ Rl
+ is a full control time. The

state at the last time is as follows, i. e.,

(F τl
ul

◦ F τl−1
ul−1 ◦ · · · ◦ F τ1

u1
)(x0) := F τ

u(x0) (2.5)

where u = (u1, . . . , ul) ∈ Ul.
For maps F ′, F ′′, a symbol «◦» means a

superposition of these maps, i. e., for every x the
condition (F ′◦F ′′)(x) = F ′(F ′′(x)) is valid. Thus,
the polysystem generates a l-parameter family of
maps in the form (2.5).

Let u be fixed. Then a dynamical polysystem
can be interpreted as a map in the form

F : Rl × X → X, F (τ, x′) = x′′, (2.6)
τ ∈ Rl, x′ ∈ X, x′′ ∈ X,

or as an action of the family F τ , τ ∈ Rl on X, i. e.,

F τ : X → X, F τ (x′) = x′′, (2.7)
x′ ∈ X, x′′ ∈ X.

Definition 1 The polysystem given by eq. (2.1)
is (exactly) controllable from x0 ∈ X to x∗ ∈ X if
there exists a time vector τ = (τi1 , . . . , τil) ∈ Rl

+

such that

x∗ − F τ (x0) = 0. (2.8)

The value τ depends on x0, x∗. Let τ0 be the
smallest value τ for which eq. (2.8) is valid. Then
we write

x0
τ−→ x∗.

Definition 2 The polysystem given by eq. (2.1)
is ϵ-controllable from x0 ∈ X to x∗ ∈ X if for ϵ > 0
there exists a time vector τ = (τi1 , . . . , τil) ∈ Rl

+

such that

|F τ (x0)− x∗| ≤ ϵ (2.9)

where τ = τ(ϵ).

The full control time is equal to |τ(ϵ)|. A
dependence of τ on ϵ can be ambiguous. We
consider some concrete dependence of τ on ϵ. In
this case, we give the following definition.

Definition 3 The polysystem given by eq. (2.1)
is approximately controllable from x0 ∈ X to x∗ ∈
X if

lim
ϵ→+0

|F τ(ϵ)(x0)− x∗| = 0. (2.10)

If the polysystem is only approximately
controllable from the state x0 to the state x∗, then
the full control time

|τ(ϵ)| → +∞, ϵ → +0.

In the sequel, we shall investigate the dependence
|τ(ϵ)| on ϵ for fixed boundary states x0, x∗.
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Next, we assume that the initial value x0 is
fixed and the final value of x∗ is arbitrary. We
consider the set X0

∗ of points x∗ attainable from
the point x0 for τ0. Assume that for |τ | ≥ |τ0|, the
set X∗ of points x∗ attainable from the point x0
for τ coincides with the set X0

∗ , i. e., X0
∗ = X∗.

Thus, we have a family of transformations

X0
∗

τ−→ X∗, (2.11)

depending on parameter τ .
Next, we introduce the notion of dynamical

polysystem associated with the original
polysystem, and its invariant measure. Using
these notions, we describe the conditions of
controllability polysystem in discrete time.

3. Definition of the associated
dynamical polysystem

Consider eq. (2.8) which we rewritten in the
form of eq. (2.6), i. e.,

F (τ, x0) = x∗, τ ∈ Rl
+ (3.1)

where F (τ0, x0) = x∗. Eq. (3.1) defines the orbit
corresponding to the value τ0 of the polysystem
given by eq. (2.7).

Differentiating eq. (3.1) on the parameter τ ,
we obtain the matrix equality

∂F

∂τ
dτ = 0. (3.2)

Assume that for any τ and x0 the condition

rank (f(τ)) = n (3.3)

is valid where ∂F
∂τ (τ) =: f∗(τ) and x0 is omitted.

Consequently, at any point τ ∈ Rl
+, eq. (3.2) gives

m-dimensional subspace in the space Rl where
m = l−n. This subspace is the tangent subspace
at τ ∈ Rl

+ to the surface given by eq. (3.1). This
surface can be given in the form

τ = τ̂(σ, τ0), σ = (σ1, . . . , σm) ∈ Σ. (3.4)

We assume that Σ = Rm or Σ = Rm
+ and τ0 =

τ̂(0, τ0). Since τ0 depends on x∗ ∈ X0
∗ , there is a

correspondence

X0
∗ → Rl

0, τ̃(x∗) = τ0

where the set Rl
0 = Rl

+ \ Int(Rl
+).

For surface (3.4), at any point τ ∈ Rl
+,

consider the n-dimensional subspace which is
orthogonal to the original m- dimensional
subspace. Suppose that the matrix ∂F

∂τ is
represented as a set of row vectors, i. e.,

f(τ) = col(f∗
1 (τ), . . . , f

∗
n(τ)).

Let the set of column vectors

row(g1(τ), . . . , gm(τ)) =: g(τ)

form a basis of the orthogonal subspace, i.e., for
every τ ∈ Rl

+ and for any pair i, j the relation

f∗
i (τ)gj(τ) = 0 ⇐⇒ f∗(τ)g(τ) = 0

is valid. Let g1(τ), . . . , gm(τ) be smooth on τ .
We assume also that the vector fields are in
involution. For simplicity, we assume that

[gi(τ), gj(τ)] = 0, i, j = 1, . . . ,m. (3.5)

The set g(τ) of vector fields g1(τ), . . . , gm(τ)
generates a polysystem with the state space Rl

and the multidimensional space Rm of time points
σ. This polysystem can be given by differential
equation in the form

dτ

dσ
= g(τ), τ(0) = τ0 (3.6)

where τ0 ∈ Rl
0.

Factor the state space Rl
+ of this polysystem

on the integer lattice Zl
+ and get the torus Tl =

Rl
+/Zl

+ which is the state space of the factor-
polysystem.

The set g of vector fields g1, . . . , gm generates
a set of one-parameter of groups Gσ1

1 , . . . , Gσm
m

where G
σj

j is an evolution operator for the vector
field gj , j = 1, . . . ,m. From eq. (3.5), it follows
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that

Gσi
i ◦Gσj

j = G
σj

j ◦Gσi
i , i, j = 1, . . . . (3.7)

Consider the smallest m-parameter group
Gσ containing these groups. In particular, this
group contains elements (monomials) of the form

Gσ := Gσm
m ◦ · · · ◦Gσ1

1 (3.8)

where σ = (σ1, . . . , σm) ∈ Σ = Rm
+ . Obviously,

Gσ′ ◦Gσ′
= Gσ′+σ′′

, σ′, σ′′ ∈ Rm
+ .

The action of the family {Gσ, σ ∈ Σ} gives
the polysystem in the form

Gσ : Tl → Tl, Gσ(τ0) = τ, G0(τ0) = τ0, (3.9)
σ ∈ Rm

+ , τ0 ∈ Tl, τ ∈ Tl,

which is called the polysystem associated with
the original polysystem (eq. (2.7)). The orbit of
original polysystem (see eq. (3.1) or eq. (3.4))
corresponds to the orbit of polysystem (3.9)
rewritten in the form

{τ |Gσ(τ0) = τ, σ ∈ Σ}.

The set Rl
+ (eq. (2.3)) can be interpreted as

the total space of points τ = (τ1, . . . , τl) (multi-
dimensional time ). For polysystem eq. (3.9), the
set Σ = Rm

+ can be interpreted as the space of the
multi-dimensional time points σ = (σ1, . . . , σm).
Thus, for continuous time, polysystem (3.9) is a
m-dimensional flow. For m = 1, we have an usual
flow.

For discrete time space Σ0 = Zm
+ , polysys-

tem (3.9) is a m-dimensional cascade

Gσ : Tl → Tl, Gσ(τ0) = τ, G0(τ0) = τ0, (3.10)
σ ∈ Zm

+ , τ0 ∈ Tl, τ ∈ Tl,

which is embedded in flow (3.9).
Consider the polysystem given by the

equation

dτ

dς
= f(τ), τ(0) = τ0 (3.11)

where ς ∈ Rn
+. This polysystem corresponds to

family of transformations (2.11). This system can
be factorized similar to system (3.6).

4. Definition of probability
characteristics of a polysystem

For a description of the statistical properties
of the trajectories of a polysystem (in particular
for the evaluation of the rate of approximation
of the trajectories to specific sets) we need the
probability characteristics of the polysystem.

4.1. Probability invariant measures of a
polysystem and distribution functions

Let A be the Borel σ-algebra of sets on
the torus Tl. Assume that for the polysystem
generated by family of maps (3.9), there is a set
of Borel invariant probability measures P on σ-
algebra A of sets on the torus Tl. For the flow
given by eq. (3.9), the invariance of the measure
means that the condition

P (A) = P ((Gσ0)−1(A)), A ∈ A, σ0 ∈ Rm
+ (4.1)

is valid. For the cascade given by eq. (3.10), there
is the analogous condition.

Let a discrete dynamical system be defined
as action of group of transformations of the kind
(3.8) on a state space Tl, i.e.,

G = {Gσ, σ ∈ Zm
+}.

According to the classical theorem of Krylov-
Bogolyubov, an invariant measure exists for a one-
parameter group of transformations. In our case,
for an m-parameter group of transformations with
property (3.7), an invariant measure also exists.
An invariant measure can exist also in more
general case. Thus, we assume that there is an
invariant measure for group G of transformations.
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4.2. Strictly ergodic measure and its
density function

Furthermore, we assume that there is a
unique ergodic measure which we denote by
PG. For simplicity, we assume that the invariant
measure is given on the unit cube Il. For this
measure, we will use the same notation PG.

For PG, let us define a distribution function

FG(x) = PG(τ0|Gσ(τ0) < x),

which does not depend on σ. Then fG(x) =
dFG
dx (x) is the density function.

Let us define the distribution function of the
module of Gσ(τ0), i. e. the function Fη for the
dynamical process

ησ(τ) := |Gσ(τ)|.

This distribution function does not depend on σ
for almost all τ0.

Assume the distribution function Fη(x) does
not depend on angle variables in a neighborhood
of zero. Consider the spherical coordinate system,
i. e., x = rp(φ) where r is a radial variable and φ
are angle variables. Thus, |x| = r, p|(φ)| = 1.

Define the density function for the radial
component in a neighborhood of zero by the
formula

fη(r) = rl−1

∫
Sl−1

fG(rp(φ))J1(φ)dφ, (4.2)

0 ≤ r ≤ r1 ≤ 1

where J1(φ) = J(r, φ)|r=1 is the reduced
Jacobian determinant of the transformation.
Hence, the distribution function of the module is
given by the formula

Fη(r) =

r∫
0

fη(r
′)dr′, 0 ≤ r′ ≤ r ≤ r1 ≤ 1. (4.3)

4.3. The Fölner family

Now, consider a family of the nested sets
Σs ⊂ Σ, t ∈ R+, i. e., Σs0 ⊂ Σs1 if s0 ≤ s1, (the
Fölner family). In addition, it is assumed that the
condition

lim
t→∞

V (Σs+δ ∆Σs)

V (Σs)
= 0

is satisfied for any δ > 0 where ∆ is the symmetric
difference of two sets and V is a measure of
volume.

These sets can be chosen as Σs = [0, s]m.
For a discrete s ∈ Z, these sets can be

selected as the sets of the form Σ0
s = Σs ∩ Zm.

4.4. Statistical distribution function of
control times

Let ησ, σ ∈ Σ be scalar stationary random
process with positive values. For any ε > 0,
consider the set

{σ|σ ∈ Σs, η
σ(τ0) < ε} =: Σs ∩Bη(ε, τ0)

where Σs = [0, s]m, Bη(ε, τ0) = {σ|ησ(τ0) < ε}.
Define the value Fη(ε, τ0) of statistical

distribution function as follows

Fη(ε, τ0) = lim
s→∞

V (Σs ∩Bη(ε, τ0))

V (Σs)
. (4.4)

For continuous time, V is a measure of volume.
For discrete time, V is a counting measure, i. e.
the measure of the discrete set is equal to the
number of its constituent elements.

By the ergodic property of the process
ησ, σ ∈ Σ, the limit value given by (4.4) is the
same for almost all τ with respect to PG. Thus,

Fη(ε, τ0) = Fη(ε), mod PG

where the distribution function Fη(ε) is defined
by formula (4.3) for r = ε. Thus, eq. (4.4) can be
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rewritten in the form

Fη(ε) =
V (Σs ∩Bη(ε))

V (Σs)
+ pη(s, ε) (4.5)

where pη(s, ε) → 0 as s → ∞.

4.5. Weyl - Schönberg criterion

The family of transformations Gσ has an
invariant measure PG iff for PG-almost all τ0

lim
s→+∞

1

V (Σs)

∫
σ∈Σs

e2πi(k,G
σ(τ0))dσ =

∫
τ∈Il

e2πi(k,τ)PG(dτ), k ∈ Zl \ {0} (4.6)

where Σs = [0, s]m, V is a measure of volume
for continuous s ∈ R+ or a counting measure for
discrete s ∈ Z+. Thus, V (Σs) = sm. The function
(., .) is the scalar product in Rl, (see [9]).

5. Estimates of the rate of
convergence of the sequence, which
approximates the exact control time

Next, we consider the problem of control by
switching among a finite number of controllers
in discrete instants of time. In other words, we
assume that control times are integers, (see eq.
(2.3)).

Thus, we shall examine the rate of
convergence of the estimates τ̂ ∈ Zl

+, which
approximate the values of control times τ ∈ Rl

+

satisfying the equation x∗ − F (τ, x0) = 0, i. e.
condition (3.1).

To solve this problem, we will use the
properties of the associated polysystem Gσ(τ0),
σ ∈ Σ (see section 3). The result will be given in
terms of the invariant measure of the associated
polysystem (see section 4).

Let Fη be the distribution function of values

ησ(τ0) = |Gσ(τ0)|, τ0 ∈ Tl (5.1)

where Gσ(τ0), σ ∈ Σ is basic process in the
form (3.9). Since the process Gσ(τ0), σ ∈ Σ is
stationary, the function Fη does not depend on σ
for almost all τ0.

Suppose that the values ησ(τ0) are dense
in the unit interval [0, r1] for PG -almost all
τ0 where σ ∈ Σ. Hence, for any r ∈ [0, r1],
there exists a sequence of the values σ such
that ησ(τ0) → r. In particular, there exists a
subsequence σs depending on τ0, i. e.

σs ∈ Σs, s = 1, 2, . . . , (5.2)

such that

ησs(τ0) → 0, s → +∞. (5.3)

Condition (5.3) means that the distance

dist(τ̂(σs, τ0),Zl
+) → 0, s → +∞ (5.4)

where the value τ̂(σs, τ0) defined by eq. (3.4).
Define the rate εs of convergence for

sequence ησs(τ0) as follows. Let

Bη,s(ε) := Σs ∩Bη(ε, τ0).

For any s, let us define the value εs of
parameter ε by the equation

V (Σs ∩Bη(ε, τ0)) = v (5.5)

where v is a finite positive integer. It means that
the set Σs contains only a finite number of points
σ such that ησ(τ0) < ε. For simplicity, let v = 1.

Let us denote V (Σs) by vs. Express the
values of εs by the values of vs. From eq. (4.5), it
follows that the value ε = εs satisfies the following
equality

Fη(εs) =
v

vs
+ pη(s, εs), mod PG, (5.6)

i.e for almost all τ0. Therefore, in eq. (5.6) and
further, τ0 is omitted.

Let us estimate the value pη(s, ε) with
respect to the value v

vs
. Rewrite the value Fη(ε)
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in the form

Fη(ε) = Fη(ε)γη(s, ε) + pη(s, ε) (5.7)

where a suitable value

γs := γη(s, ε) → 1, s → ∞.

From (4.5) and (5.7), it follows that

Fη(εs)γsvs = V (Σs ∩Bη(ε)).

Hence,

Fη(εs)γsvs = v ⇐⇒ Fη(εs) =
v

γsvs
. (5.8)

Assume that Fη is strictly monotonic. Then
from (5.6), (5.8), it follows that

v

γsvs
=

v

vs
+ pη(s, εs) ⇐⇒

v

vs

(
1− γs
γs

)
= pη(s, εs) ⇐⇒

pη(s, εs) = o

(
v

vs

)
. (5.9)

From (5.6), (5.9), it follows that

εs = F−1
η

(
v

vs
+ o

(
v

vs

))
. (5.10)

Thus, we have proved the following theorem.

Theorem 1 For PG-almost all τ0, the rate of
convergence of sequence (5.3)of estimates ησs(τ0)
is given by eq. (5.10) where ησ(τ0) is defined by
eq. (5.1).

Remark 1 Formula (5.10) defines the Smirnov
inverse transformation. There is a generalization
of the Smirnov inverse transformation if Fη is
weakly monotonic.

Further, for the dynamical process ησ =
|Gσ|, σ ∈ Σ, we consider the cases when this
dynamical process depends on some parameters.

6. The scale of the distribution
functions of control times for dynamical
polysystem

Consider a family {Gσ
α| 0 ≤ α < ∞} of

control processes of the form (3.9). Let the radial
distribution function of values ησα = |Gσ

α|, σ ∈ Σ
be defined by the formula

Fα(r) =

{
Crα, 0 ≤ r ≤ r1,

1, r1 < r ≤ 1

where C = 1
rα1

, 0 < r1 ≤ 1.
For vs = sm and v = 1, let us use eq. (5.10)

which takes the form

εs = F−1
α

(
1

sm
+ o

(
1

sm

))
=(

1

sm
+ o

(
1

sm

)) 1
α

=
1

s
m
α

+ o

(
1

s
m
α

)
. (6.1)

By analyzing the scale of distribution
functions Fα, we can conclude the following.

1. For α = 0, F0(0) = 0 and F0(r) = 1 for
r > 0. Hence, the density function f0(r) = δ(r), i.
e., it is the δ-function. Thus, the case α = 0 means
that it is extremely fast convergence of sequence
(5.3) (or (5.4)) in a finite number of steps.

2. The case 0 < α < 1 means that there is
fast convergence of of sequence (5.3) (or (5.4)).
The density function is a function unbounded in
a neighborhood of zero.

3. For α = 1, F1(r) = 1
r1
r where 0 ≤

r ≤ r1. Hence, F1 is the function of a uniform
distribution. Thus, the case α = 1 means that
there is normal convergence of of sequence (5.3)
(or (5.4)). The density function is a separated
from zero and bounded function.

4. The case 1 < α < ∞ means that there is
slow convergence of of sequence (5.3) (or (5.4)).
The density function vanishes at r = 0. With
increasing values of the parameter α, the rate of
convergence decreases.

5. The case α = ∞ formally means that
the density function is identically zero in a
neighborhood of r = 0. The case α = ∞ can be
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FIG. 1. Graphs of the distribution functions F0, F1/2.

FIG. 2: Graphs of the distribution functions F1, F2.

interpreted as a lack of convergence of of sequence
(5.3) (or (5.4)), i. e. the points of the sequence ησ∞,
σ ∈ Σ are separated from zero.

Thus, we have proved the following theorem.

Theorem 2 The scale of the rates of convergence
for estimates is described by the cases 1 – 5.

Graphs of the distribution functions
Fα(r), 0 ≤ r ≤ 1, corresponding to the cases 1–4,
are shown in FIG. 1, 2.

7. Conclusion

In order to investigate the controllability
polysystem in discrete time, probabilistic
methods are used. To define the control times,
it is required to find the numerical solutions of
inequality (2.9) with a given accuracy. The rate
of convergence of estimates of control times is
established (see Theorem 1). For estimates of
control times, the scale of the rates of convergence
is described (see Theorem 2).
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