An Interdisciplinary Journal

2015, Vol.18, No.3, pp.335-355

Studies of Dynamical Localization in a Finite-dimensional Model of the Quantum Kicked Rotator
Thanos Manos and Marko Robnik

We review our recent works on the dynamical localization in the quantum kicked rotator (QKR) and related properties of the classical kicked rotator (the standard map, SM). We introduce the Izrailev N-dimensional model of the QKR and analyze the localization properties of the Floquet eigenstates [Phys. Rev. E 87, 062905 (2013)], and the statistical properties of the quasienergy spectra. We survey normal and anomalous diffusion in the SM, and the related accelerator modes [Phys. Rev. E 89, 022905 (2014)]. We analyze the statistical properties [Phys. Rev. E 91,042904 (2015)] of the localization measure, and show that the reciprocal localization length has an almost Gaussian distribution which has a finite variance leven in the limit of the infinitely dimensional model of the QKR, N → ∞. This sheds newight on the relation between the QKR and the Anderson localization phenomenon in the one-dimensional tight-binding model. It explains the so far mysterious strong fluctuations in the scaling properties of the QKR. The reason is that the finite bandwidth approximation of the underlying Hamilton dynamical system in the Shepelyansky picture [Phys. Rev. Lett. 56, 677 (1986)] does not apply rigorously. These results call for a more refined theory of the localization length in the QKR and in similar Floquet systems where we must predict not only the mean value of the inverse of the localization length but also its (Gaussian) distribution. We also numerically analyze the related behavior of finite time Lyapunov exponents in the SM and of the 2 × 2 transfer matrix formalism.

Key words: quantum and classical chaos, dynamical localization, diffusion, quantum kicked rotator

Full text:  Acrobat PDF  (438KB)  

ContentsJournal Home Page

Copyright © Nonlinear Phenomena in Complex Systems. Last updated: October 07, 2015