NONLINEAR PHENOMENA IN COMPLEX SYSTEMS
An Interdisciplinary Journal

2025, Vol.28, No.3, pp.298 - 307


Bifurcation and Hysteresis Analysis in a Memristor Circuit under Periodic Excitations

M. Anisha Nashrin, S. Siva Sakthi Pitchammal, S. M. Abdul Kader, A. Zeenath Bazeera, and V. Chinnathambi

In this paper, we analyze bifurcation and hysteresis behaviours in a simple memristive circuit model subjected to various periodic excitations. The external periodic inputs considered include sine wave, square wave, symmetric saw-tooth (SST) wave, and asymmetric saw-tooth (AST ) wave. To analyze the circuit's dynamical behavior, we employ a range of nonlinear simulation tools, including phase portraits, Poincar'e maps, bifurcation diagrams, and maximal Lyapunov exponent diagrams. Several intriguing phenomena related to chaos theory are observed. Notably, the transition to chaotic behavior via antimonotonicity is identified. Additionally, the hysteresis phenomenon and the presence of coexisting attractors, influenced by initial conditions and system parameters, are explored. Furthermore, the period-doubling (PD) route to chaos, reverse period-doubling (RPD) and crisis phenomena are also observed.

Key words: memristive circuit, periodic inputs, chaos, hysteresis, antimonotonicity

DOI: https://doi.org/10.5281/zenodo.17236202

Full text:  Acrobat PDF  (1653 KB)   Open Access   



ContentsJournal Home Page

Copyright © Nonlinear Phenomena in Complex Systems. Last updated: October 08, 2025